https://doi.org/10.23648/UMBJ.2016.24.3982
УДК 612.217
ЗНАЧЕНИЕ НОРАДРЕНЕРГИЧЕСКИХ СТРУКТУР ФАСТИГИАЛЬНОГО ЯДРА МОЗЖЕЧКА В РЕГУЛЯЦИИ ДЫХАНИЯ У КРЫС
В.И. Беляков
ФГАОУ ВО «Самарский национальный исследовательский университет им. академика С.П. Королева», г. Самара, Россия
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Цель исследования — изучить специфику участия норадренергических структур фастигиального ядра (ФЯ) мозжечка в регуляции различных параметров паттерна дыхания и биоэлектрической активности инспираторных мышц.
Материалы и методы. Опыты проводились на 22 половозрелых спонтанно дышавших крысах под уретановым наркозом. В первой серии с использованием методов пневмотахографии и электромиографии анализировались реакции дыхания и биоэлектрической активности диафрагмы и наружных межреберных мышц на микроинъекции растворов норадреналина в различной концентрации в ФЯ мозжечка. Во второй серии наблюдений осуществлялось электрическое раздражение ФЯ мозжечка импульсным током различной силы и частоты до и в условиях активации норадренергических структур исследуемого ядра.
Результаты. Основным эффектом активации норадренцептивных структур ФЯ мозжечка является увеличение частоты дыхания и минутной вентиляции легких. Данные изменения соответствуют перестройкам параметров электромиограмм инспираторных мышц. Предварительные локальные введения норадреналина в ФЯ обеспечивают усиление регулирующих влияний исследуемого ядра на дыхание и активность инспираторных мышц в условиях его электрического раздражения.
Заключение. Особенности модулирующих влияний ФЯ мозжечка на дыхание определяются функциональным состоянием его норадренергических структур.
Ключевые слова: дыхание, мозжечок, фастигиальное ядро, норадреналин, адренорецепторы.
Литература
1. Меркулова Н.А., Инюшкин А.Н., Беляков В.И., Зайнулин Р.А., Инюшкина Е.М. Дыхательный центр и регуляция его деятельности супрабульбарными структурами. Самара: Самарский университет; 2007. 170.
2. Xu F., Frazier D.T. Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J. Appl. Physiol. 2000; 9 (3): 996–1004.
3. Бархатова В.П. Нейротрансмиттерная организация и функциональное значение мозжечка. Анналы клинической и экспериментальной неврологии. 2010; 4 (3): 44–49.
4. Di Mauro M., Li Volsi G., Licata F. Noradrenergic Control of Neuronal Firing in Cerebellar Nuclei: Modulation of GABA Responses. Cerebellum. 2013; 12 (3): 350–361.
5. Di Mauro M., Fretto G., Caldera M., Li Volsi G., Licata F., Ciranna L., Santangelo F. Noradrenaline and 5-hydroxytryptamine in cerebellar nuclei of the rat: functional effects on neuronal firing. Neurosci. Lett. 2003; 347 (2): 101–105.
6. Dietrichs E. Cerebellar cortical and nuclear afferents from the feline locus coeruleus complex. Neuroscience. 1988; 27 (1): 77–91.
7. Nedelescu H., Chowdhury T.G., Wable G.S., Arbuthnott G., Aoki C. Cerebellar sub-divisions differ in exercise-induced plasticity of noradrenergic axons and in their association with resilience to activity-based anorexia. Brain Struct. Funct. 2016; 221: 1–23.
8. Samuels E.R., Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I; principles of functional organization. Curr. Neuropharmacol. 2008; 6 (3): 235–253.
9. Hoffer B.J., Rose G., Parfitt K., Freedman R., Bickford-Wimer P.C. Age-related changes in cerebellar noradrenergic function. Ann. N.Y. Acad. Sci. 1988; 515: 269–286.
10. Licata F., Li Volsi G., Maugeri G., Ciranna L., Santangelo F. Effects of noradrenaline on the firing rate of vestibular neurons. Neuroscience. 1993; 53 (1): 149–158.
11. Kolasiewicz W., Kuter K., Nowak P., Pastuszka A., Ossowska K. Cerebellar Noradrenergic Innervation Enhances the Harmaline-Induced Tremor in Rats. Cerebellum. 2011; 10 (2): 267–280.
12. Marin-Lahoz J., Gironell A. Linking Essential Tremor to the Cerebellum: Neurochemical Evidence. Cerebellum. 2016; 15 (3): 243–252.
13. Di Mauro M., Bronzi D., Li Volsi G., Licata F., Lombardo P., Santangelo F. Noradrenaline modulates neuronal responses to GABA in vestibular nuclei. Neuroscience. 2008; 153 (4): 1320–1331.
14. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. Sydney: Academic; 2007.
15. Zhang X.Y., Wang J.J., Zhu J.N. Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum & Ataxias. 2016; 3 (9): 1–10.
16. Gould T. J., Adams C.E., Bickford P.C. Beta-adrenergic modulation of GABAergic inhibition in the deep cerebellar nuclei of F344 rats. Neuropharmacology.1997; 36 (1): 75–81.
17. Nicholas A.P., Pieribone V.A., Hokfelt T. Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience.1993; 56 (4): 1023–1039.
18. Phan J.A., Landau A.M., Wong D.F., Jakobsen S., Nahimi A., Doudet D.J., Gjedde A. Quantification of [(11)C] yohimbine binding to α2 adrenoceptors in rat brain in vivo. J. Cereb. Blood. Flow. Metab. 2015; 35 (3): 501–511.
19. Григорьев А.И., Григорьян Н.А. Трудные годы лидера физиологии. К 125-летию со дня рождения академика Л.А. Орбели. Вестник российской академии наук. 2007; 77 (5): 426–444.
https://doi.org/10.23648/UMBJ.2016.24.3982
IMPORTANCE of NORADRENERGIC STRUCTURES of CEREBELLAR FASTIGIAL NUCLEUS IN CONTROL OF BREATHING IN RATS
V.I. Belyakov
Academician Korolev Samara National Research University, Samara, Russia
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Objective. The aim of the study is to examine the influence of noradrenergic structures of cerebellar fastigial nucleus (CFN) on the regulation of various parameters of breathing patterns and bioelectric activity of inspiratory muscles.
Materials and Methods. Experiments were conducted on 22 spontaneously breathing adult rats under urethane anesthesia. In the first set of experiments the authors analyzed respiratory response and bioelectrical activity of the diaphragm and external intercostal muscles to the microinjection of noradrenaline solutions of various concentrations in CFN. The measurements were conducted with pneumotachography and electromyography. During the second set of experiments electric simulation of CFN by impulse current was carried out. The current varied in frequency and strength before and during activation of noradrenergic structures of the nucleus.
Results. The main effect of activation of CFN noradrenergic structures is an increase in respiratory rate and minute pulmonary ventilation. These changes correspond to electromyogram (EMG) parameters of inspiratory muscles. Preliminary local administration of noradrenaline into CFN provides empowerment of nuclei influence on respiration and activity of inspiratory muscles in response to electrical stimulation.
Conclusion. Peculiarities of CFN modulating effects on respiration are determined by functional state of its noradrenergic structures.
Keywords: respiration, cerebellum, fastigial nucleus, noradrenaline, adrenergic receptors.
References
1. Merkulova N.A., Inyushkin A.N., Belyakov V.I., Zaynulin R.A., Inyushkina E.M. Dykhatel'nyy tsentr i regulyatsiya ego deyatel'nosti suprabul'barnymi strukturami [Respiratory center and the regulation of its activity with supra-bulbar structures]. Samara: Samarskiy universitet; 2007. 170 (in Russian).
2. Xu F., Frazier D.T. Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J. Appl. Physiol. 2000; 9 (3): 996–1004.
3. Barkhatova V.P. Neyrotransmitternaya organizatsiya i funktsional'noe znachenie mozzhechka [Neurotransmitter structure and functional role of cerebellum]. Annaly klinicheskoy i eksperimental'noy nevrologii. 2010; 4 (3): 44–49 (in Russian).
4. Di Mauro M., Li Volsi G., Licata F. Noradrenergic Control of Neuronal Firing in Cerebellar Nuclei: Modulation of GABA Responses. Cerebellum. 2013; 12 (3): 350–361.
5. Di Mauro M., Fretto G., Caldera M., Li Volsi G., Licata F., Ciranna L., Santangelo F. Noradrenaline and 5-hydroxytryptamine in cerebellar nuclei of the rat: functional effects on neuronal firing. Neurosci. Lett. 2003; 347 (2): 101–105.
6. Dietrichs E. Cerebellar cortical and nuclear afferents from the feline locus coeruleus complex. Neuroscience. 1988; 27 (1): 77–91.
7. Nedelescu H., Chowdhury T.G., Wable G.S., Arbuthnott G., Aoki C. Cerebellar sub-divisions differ in exercise-induced plasticity of noradrenergic axons and in their association with resilience to activity-based anorexia. Brain Struct. Funct. 2016; 221: 1–23.
8. Samuels E.R., Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I; principles of functional organization. Neuropharmacol. 2008; 6 (3): 235–253.
9. Hoffer B.J., Rose G., Parfitt K., Freedman R., Bickford-Wimer P.C. Age-related changes in cerebellar noradrenergic function. Ann. N.Y. Acad. Sci. 1988; 515: 269–286.
10. Licata F., Li Volsi G., Maugeri G., Ciranna L., Santangelo F. Effects of noradrenaline on the firing rate of vestibular neurons. Neuroscience. 1993; 53 (1): 149–158.
11. Kolasiewicz W., Kuter K., Nowak P., Pastuszka A., Ossowska K. Cerebellar Noradrenergic Innervation Enhances the Harmaline-Induced Tremor in Rats. Cerebellum. 2011; 10 (2): 267–280.
12. Marin-Lahoz J., Gironell A. Linking Essential Tremor to the Cerebellum: Neurochemical Evidence. Cerebellum. 2016; 15 (3): 243–252.
13. Di Mauro M., Bronzi D., Li Volsi G., Licata F., Lombardo P., Santangelo F. Noradrenaline modulates neuronal responses to GABA in vestibular nuclei. Neuroscience. 2008; 153 (4): 1320–1331.
14. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. Sydney: Academic; 2007.
15. Zhang X. Y., Wang J.J., Zhu J.N. Cerebellar fastigial nucleus: from anatomic construction to physiological functions. Cerebellum & Ataxias. 2016; 3 (9): 1–10.
16. Gould T.J., Adams C.E., Bickford P.C. Beta-adrenergic modulation of GABAergic inhibition in the deep cerebellar nuclei of F344 rats. Neuropharmacology. 1997; 36 (1): 75–81.
17. Nicholas A.P., Pieribone V.A., Hokfelt T. Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience. 1993; 56 (4): 1023–1039.
18. Phan J.A., Landau A.M., Wong D.F., Jakobsen S., Nahimi A., Doudet D.J., Gjedde A. Quantification of [(11)C] yohimbine binding to α2 adrenoceptors in rat brain in vivo. J. Cereb. Blood. Flow. Metab. 2015; 35 (3): 501–511.
19. Grigor'ev A.I., Grigor'yan N.A. Trudnye gody lidera fiziologii. K 125-letiyu so dnya rozhdeniya akademika L.A. Orbeli [Hard years of a physiology leader. L.A. Orbeli 125th anniversary]. Vestnik rossiyskoy akademii nauk. 2007; 77 (5): 426–444 (in Russian).