Скачать статью

https://doi.org/10.23648/UMBJ.2017.28.8756

УДК 612.28

 

РЕСПИРАТОРНЫЕ ЭФФЕКТЫ АКТИВАЦИИ ПАРАТРИГЕМИНАЛЬНОЙ ОБЛАСТИ У КРЫС

 

О.А. Ведясова, Т.Е. Ковалева

ФГАОУ ВО «Самарский национальный исследовательский университет им. академика С.П. Королева», г. Самара, Россия

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Актуальным аспектом проблемы регуляции дыхания у млекопитающих животных является изучение механизмов, опосредующих респираторную активность паратригеминальной области (ПТО) моста.

Цель. Анализ изменений внешнего дыхания и реакций диафрагмальной мышцы при электростимуляции и активации L-глутаматом ПТО у крыс.

Материалы и методы. Поставлены острые опыты на крысах, наркотизированных уретаном. Электростимуляцию ПТО осуществляли монополярно импульсным током посредством стального игольчатого микроэлектрода. Раствор L-глутамата (10-7 М; 0,2 мкл) инъецировали в ПТО через стеклянную микроканюлю при помощи микрошприца МШ-1. Внешнее дыхание регистрировали методом спирографии, реакции диафрагмы оценивали по электромиограмме (ЭМГ).

Результаты. Активация ПТО путем электростимуляции и микроинъекций L-глутамата вызывала сходные эффекты в виде ослабления легочной вентиляции и уменьшения частоты дыхания за счет пролонгации экспираторной фазы. Изменениям паттерна дыхания соответствовало увеличение интервалов между инспираторными залпами на ЭМГ диафрагмы.

Заключение. ПТО у млекопитающих животных участвует в регуляции ритма и паттерна дыхания. Реализация респираторных эффектов ПТО опосредуется глутаматергическими связями, которые у крыс преимущественно включены в механизмы, определяющие длительность фазы выдоха и, таким образом, частоту дыхания.

Ключевые слова: паратригеминальная область, глутамат, паттерн внешнего дыхания, электромиограмма диафрагмы.

 

Литература

  1. Bianchi A.L., Denavit-Saubie M., Champagnat J. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev. 1995; 75 (1): 1–45.
  2. Сафонов В.А. Регуляция внешнего дыхания. Вестник СурГУ. Медицина. 2009; 1 (2): 13–22.
  3. Feldman J.L., Del Negro C.A. Looking for inspiration: new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 2006; 7: 232–242.
  4. Huckstepp R.T.R., Cardoza K.P., Henderson L.E., Feldman J.L. Role of parafacial nuclei in control of breathing in adult rats. J. Neurosci. 2015; 35 (3): 1052–1067.
  5. Moraes D.J.A., Dias M.B., Cavalcanti-Kwiatkoski R., Machado B.H., ZoccalContribution of the retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats. . 2012; 108: 882–890.
  6. Cinelli E., Robertson B., Mutolo D., Grillner S., Pantaleo T. Bongianni F. Neuronal mechanisms of respiratory pattern generation are evolutionary conserved. J. Neurosci. 2013; 33 (21): 9104–9112.
  7. Cinelli E., Mutolo D., Contini M., Pantaleo T., Bongianni F. Inhibitory control of ascending glutamatergic projections to the lamprey respiratory rhythm generator. ; 326: 126–140.
  8. Song G., Yu Y., Poon C.-S. Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J. Neurosci. 2006; 26 (1): 300–310.
  9. Guyenet P.G., Bayliss D.A., Stornetta R.L., Ludwig M.-G., Kumar N.N., Shi Y., Burke P.G.R., Kanbar R., Basting T.M., Holloway B.B., Wenker I.C. Proton detection and breathing regulation by the retrotrapezoid nucleus. J. Physiol. 2016; 594 (6): 1529–1551.
  10. Alheid G.F., McCrimmon D.R. The chemical neuroanatomy of breathing. Respir. Physiol. Neurobiol. 2008; 164: 3–11.
  11. Villar-Cervino Glutamatergic neuronal populations in the brainstem of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J. Comp. Neurol. 2013; 521: 522–557.
  12. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 6th ed. New York: Elsevier/Academic Press; 2007. 456.
  13. Mutolo D., Bongianni F., Cinelli E., Pantaleo T. Role of neurokinin receptors and ionic mechanisms within the respiratory network of the lamprey. Neuroscience. 2010; 169: 1136–1149.
  14. Gariepy J.-F., Missaghi K., Chartre S., Robert M., Auclair F., Dubuc R. Bilateral connectivity in the brainstem respiratory networks of lampreys. J. Comp. Neurol. 2012; 520: 1442–1456.
  15. Jones S.E., Saad M., Lewis D.I., Subramanian H.H., Dutschmann M. The nucleus retroambiguus as possible site for inspiratory rhythm generation caudal to obex. Respir. Physiol. Neurobiol. 2012; 180: 305–310.
  16. Bongianni F., Mutolo D., Cinelli E., Pantaleo T. Neural mechanisms underlying respiratory rhythm generation in the lamprey. Respir. Physiol. Neurobiol. 2016; 224: 17–26.
  17. Cinelli E., Mutolo D., Robertson B., Grillner S., Contini M., Pantaleo T., Bongianni F. Gabaergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network. J. Physiol. 2014; 592:1823–1838.
  18. Driessen A.K., Farrell M.J., Mazzone S.B., McGovern A.E. The role of the paratrigeminal nucleus in vagal afferent evoked respiratory reflexes: A neuroanatomical and functional study in guinea pigs. Front. Physiol. 2015; 6: 378–391. URL: http://pubmedcentralcanada.ca/pmcc/articles/PMC4685097/ (дата обращения: 15.02.2017). DOI: 10.3389/fphys.2015.00378.
  19. Семьянов А.В. Диффузная внесинаптическая нейропередача посредством глутамата и ГАМК. Журнал высшей нервной деятельности им. И.П. Павлова. 2004; 54 (1): 68–84.
  20. Cossart R., Esclapez M., Hirsch J.C., Bernard C., Ben-Ari Y. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat. Neurosci. 1998; 1 (6): 470–478.

 

 

Download  article

https://doi.org/10.23648/UMBJ.2017.28.8756

RESPIRATORY EFFECTS OF THE PARATRIGEMINAL AREA ACTIVATION IN RATS

 

O.A. Vedyasova, T.E. Kovaleva

Samara National Research University named after academician S.P. Korolev (Samara University), Samara, Russia

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

A very important aspect of breathing control problem in mammals is studying mechanisms, which mediate respiratory activity of the paratrigeminal area (PA) of the pons.

Objective. The purpose of the study is to analyze the changes in external respiration and diaphragm reactions to electrical stimulation and L-glutamate activation into PA in rats.

Materials and Methods. Acute experiments were performed on rats anesthetized with urethane (n=15). PA was irritated with a pulse current by means of unipolar steel needle-shaped microelectrode. L-glutamate solution (10-7 M, 0.2 μl) was injected into PA through a glass micro-cannula (microsyringe MSh-1). External respiration was registered by means of spirography; diaphragm response was estimated using electromyogram (EMG).

Results. PA activation by electrical stimulation and L-glutamate microinjection caused similar effects in the form of pulmonary ventilation reduction and respiratory rate reduction due to prolongation of the expiratory phase. Changes in the breathing pattern corresponded to increased intervals between the inspiratory volleys on the EMG of the diaphragm.

Conclusion. The data obtained indicate that PA plays an important part in the rhythm and breathing pattern regulation of mammals. PA involvement in respiratory control is mediated by glutamatergic bonds. In rats, such bonds are included in the mechanisms regulating the duration of the exhalation and, thus, respiratory rate.

Keywords: paratrigeminal area, L-glutamate, pattern of external breathing, electromyogram of a diaphragm.

 

References

  1. Bianchi A.L., Denavit-Saubie M., Champagnat J. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev. 1995; 75 (1): 1–45.
  2. Safonov V.A. Regulyatsiya vneshnego dykhaniya [Regulation of external breathing]. Vestnik SurGU. Meditsina. 2009; 1 (2): 13–22 (in Russian).
  3. Feldman J.L., Del Negro C.A. Looking for inspiration: new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 2006; 7: 232–242.
  4. Huckstepp R.T.R., Cardoza K.P., Henderson L.E., Feldman J.L. Role of parafacial nuclei in control of breathing in adult rats. J. Neurosci. 2015; 35 (3): 1052–1067.
  5. Moraes D.J.A., Dias M.B., Cavalcanti-Kwiatkoski R., Machado B.H., Zoccal D.B. Contribution of the retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats. J. Neurophysiol. 2012; 108: 882–890.
  6. Cinelli E., Robertson B., Mutolo D., Grillner S., Pantaleo T. Bongianni F. Neuronal mechanisms of respiratory pattern generation are evolutionary conserved. J. Neurosci. 2013; 33 (21): 9104–9112.
  7. Cinelli E., Mutolo D., Contini M., Pantaleo T., Bongianni F. Inhibitory control of ascending glutamatergic projections to the lamprey respiratory rhythm generator. . 2016; 326: 126–140.
  8. Song G., Yu Y., Poon C.-S. Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J. Neurosci. 2006; 26 (1): 300–310.
  9. Guyenet P.G., Bayliss D.A., Stornetta R.L., Ludwig M.-G., Kumar N.N., Shi Y., Burke P.G.R., Kanbar R., Basting T.M., Holloway B.B., Wenker I.C. Proton detection and breathing regulation by the retrotrapezoid nucleus. J. Physiol. 2016; 594 (6): 1529–1551.
  10. Alheid G.F., McCrimmon D.R. The chemical neuroanatomy of breathing. Respir. Physiol. Neurobiol. 2008; 164: 3–11.
  11. Villar-Cervino V., Barreiro-Iglesias A., Fernandez-Lopez B., Mazan S., Rodicio M.C., Anadon R. Glutamatergic neuronal populations in the brainstem of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J. Comp. Neurol. 2013; 521: 522–557.
  12. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 6th ed. New York: Elsevier/Academic Press; 2007. 456.
  13. Mutolo D., Bongianni F., Cinelli E., Pantaleo T. Role of neurokinin receptors and ionic mechanisms within the respiratory network of the lamprey. Neuroscience. 2010; 169: 1136–1149.
  14. Gariepy J.-F., Missaghi K., Chartre S., Robert M., Auclair F., Dubuc R. Bilateral connectivity in the brainstem respiratory networks of lampreys. J. Comp. Neurol. 2012; 520: 1442–1456.
  15. Jones S.E., Saad M., Lewis D.I., Subramanian H.H., Dutschmann M. The nucleus retroambiguus as possible site for inspiratory rhythm generation caudal to obex. Respir. Physiol. Neurobiol. 2012; 180: 305–310.
  16. Bongianni F., Mutolo D., Cinelli E., Pantaleo T. Neural mechanisms underlying respiratory rhythm generation in the lamprey. Respir. Physiol. Neurobiol. 2016; 224: 17–26.
  17. Cinelli E., Mutolo D., Robertson B., Grillner S., Contini M., Pantaleo T., Bongianni F. Gabaergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network. J. Physiol. 2014; 592:1823–1838.
  18. Driessen A.K., Farrell M.J., Mazzone S.B., McGovern A.E. The role of the paratrigeminal nucleus in vagal afferent evoked respiratory reflexes: A neuroanatomical and functional study in guinea pigs. Front. Physiol. 2015; 6: 378–391. Available at: http://pubmedcentralcanada.ca/pmcc/articles/PMC46 85097/ (accessed: 15.02.2017). DOI: 10.3389/fphys.2015.00378.
  19. Sem'yanov A.V. Diffuznaya vnesinapticheskaya neyroperedacha posredstvom glutamata i GAMK [Diffuse extra-synaptic neurotransmission by glutamate and GABA]. Zhurnal vysshey nervnoy deyatel'nosti im. I.P. Pavlova. 2004; 54 (1): 68–84 (in Russian).
  20. Cossart R., Esclapez M., Hirsch J.C., Bernard C., Ben-Ari Y. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat. Neurosci. 1998; 1 (6): 470–478.