Скачать статью

DOI 10.23648/UMBJ.2018.32.22699

УДК 57.574/577:57.032

 

ОЦЕНКА ТОКСИЧНОСТИ НАНОЧАСТИЦ SiO2, Zn И ZnO ПРИ ДЕЙСТВИИ УФ-СВЕТА

 

Д.Б. Косян1, Е.В. Яушева1, Е.А. Русакова1, О.Ю. Сипайлова1,2

1 ФГБНУ «Федеральный научный центр биологических систем и агротехнологий Российской академии наук», г. Оренбург, Россия;

2 ФГБОУ ВО «Оренбургский государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Оренбург, Россия

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Цель работы – получить информацию о влиянии облучения УФ-светом водных суспензий наночастиц SiO2, Zn, ZnO на морфофункциональные характеристики культивируемых клеток человека и животных.

Материалы и методы. Исследовано влияние различного времени экспозиции УФ-облучения (1, 2, 5 мин) на биологическую активность наночастиц (НЧ) SiO2, Zn, ZnO. В качестве объектов исследования использованы перевиваемые культуры Hep-2 (клетки карциномы гортани человека) и RD (клетки рабдомиосаркомы человека), полученные из российской коллекции клеточных культур Института цитологии РАН (г. Санкт-Петербург, Россия). Цитотоксическое действие анализируемых веществ определено с помощью МТТ-теста. Произведен расчет индексов цитотоксичности и жизнеспособности.

Результаты. Исследование цитотоксического действия исследуемых нанопрепаратов показало различие данного свойства у наночастиц. Так, клетки рабдомиосаркомы человека более подвержены действию облученных наночастиц Zn и ZnO, чем клетки карциномы гортани человека.
Разница в индексе токсичности небольшая и соотносится со всеми временными периодами экспозиции. В случае с НЧ SiO2 наблюдается противоположный эффект: облученный УФ-светом препарат вызывает ярко выраженное негативное действие на клетку в сравнении с другими нановеществами. Расчет индекса жизнеспособности позволил выявить зависимость между токсичностью исследуемых веществ и временем облучения наночастиц: чем больше время облучения, тем больше гибель клеток.

Выводы. Дополнительные особенности наночастиц, обусловленные действием различных факторов среды, позволяют использовать токсичность субстанции как необходимое оружие в достижении избирательного действия в борьбе с опухолевыми клетками, а цитотоксичность оценивать
с учетом избирательного биораспределения.

Ключевые слова: наночастицы, цитотоксичность, культуры клеток, фотоактивное действие.

 

Литература

1. Abbas F., Jan T., Iqbal J., Haider Naqvi M.S. Fe doping induced enhancement in room temperature ferromagnetism and selective cytotoxicity of CeO2 nanoparticles. Current Applied Physics. 2015; 15 (11): 1428–1434.

2. De Stefano D., Carnuccio R., Maiuri M.C. Nanomaterials toxicity and cell death modalities. Journal of drug delivery. 2012; 167896: 1–10.

3. Суетина И.А., Мезенцева М.В., Гущина Е.А., Лисицин Ф.А., Руссу Л.И., Лопатина О.А, Фирсова Е.Л., Тайсон Д.Ф., Джонсон М.Е., Хинг В., Остроумов С.А. Влияние наночастиц металлов на жизнеспособность и морфофункциональные характеристики культивируемых клеток человека
и животных. Клеточные культуры. 2016; 32: 43–53.

4. Wei K., Xu X., Pu X., Hou Z., Zhang Q. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale Res. Lett. 2011; 6: 1–10.

5. Selivanov N.Y., Selivanova O.G., Sokolov O.I., Sokolova M.K., Sokolov A.O., Bogatyrev V.A., Dykman L.A. Effect of gold and silver nanoparticles on the growth of the Arabidopsis thaliana cell suspension culture. Nanotechnologies in Russia. 2017; 12 (1–2): 116–124.

6. Monopoli M.P., Aberg C., Salvati A., Dawson K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012; 7: 779–786.

7. Casals E., Pfaller T., Duschl A., Oostingh G.J., Puntes V. Hardening of the nanoparticleprotein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small. 2011; 7 (24): 3479–3486.

8. Wang J., Sun P., Bao Y., Liu J., An L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol in Vitro. 2011; 25: 242–250.

9. Щербаков А.Б. Наноматериалы на основе диоксида церия: свойства и перспективы использования в биологии и медицине. Биотехнология. 2011; 4 (1): 9–28.

10. Сидоренко Ю.С., Златник Е.Ю., Передреева Л.В., Бородулин В.Б. Противоопухолевое действие наночастиц металлов (экспериментальное исследование). Известия Самарского научного центра РАН. 2009; 5 (2): 482–486.

11. Zhou M., Liu S., Jiang Y., Ma H., Shi M., Wang Q., Zhong W., Liao W., Xing, M.M.Q. Doxorubicin-Loaded Single Wall Nanotube Thermo-Sensitive Hydrogel for Gastric Cancer Chemo-Photothermal Therapy. Adv. Funct. Mater. 2015; 25: 4730–4739.

12. Schipper M.L., Nakayama-Ratchford N., Davis C.R., Kam N.W., Chu P., Liu Z., Sun X., Dai H., Gambhir S.S. Pilot toxicology study of singlewalled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 2008; 3: 216–221.

13. Liu Z., Sun X., Nakayama N., Dai H. Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS Nano. 2007; 1: 50–56.

14. Al Faraj A., Shaik A.S., Ratemi E., Halwani R. Combination of drugconjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. Journal of Controlled Release. 2016; 225: 240–251.

15. Khaydukov E.V., Mironova K.E., Semchishen V.A., Generalova A.N., Nechaev A.V., Khochenkov D.A., Stepanova E.V., Lebedev O.I., Zvyagin A.V., Deyev S.M., Panchenko V.Ya. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016; 6: 35103–35110.

16. Kam N.W.S., O'Connell M., Wisdom J.A., Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci USA. 2005; 102: 11600–11605.

17. Cherukuri P., Gannon C.J., Leeuw T.K., Schmidt H.K., Smalley R.E., Curley S.A., Weisman R.B. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA. 2006; 103: 18882–18886.

18. Brown S.D., Nativo P., Smith J.A., Stirling D., Edwards P.R., Venugopal B., Flint D.J., Plumb J.A., Graham D., Wheate N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. Journal of the American Chemical Society. 2010; 132 (13): 4678–4684.

19. Hamid R., Bahreyni-Toosi S., Meybodi N.T., Esmaily H. Gold-gold sulphidenanoshellsas a novel intensifier for antitumor effects of radiofrequency field. Iran J. Basic Med. Sci. 2014; 17: 516–521.

 

 

Download  article

DOI 10.23648/UMBJ.2018.32.22699

 

ESTIMATION OF TOXICITY OF SiO2, Zn, and ZnO NANOPARTICLES UNDER UV LIGHT

 

D.B. Kosyan1, E.V. Yausheva1, E.A. Rusakova1, O.Yu. Sipaylova1,2

1 Federal Research Centre of Biological Systems and Agrotechnologies, Russian Academy of Sciences, Orenburg, Russia;

2 Orenburg State Medical Univesity, Ministry of Health of the Russian Federation, Orenburg, Russia

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

The aim of the paper is to obtain information on the effect of UV irradiation of aqueous suspensions of SiO2, Zn, ZnO nanoparticles on the morphofunctional characteristics of cultured human and animal cells.

Materials and Methods. The authors examined the effect of UV irradiation exposure time (1, 2, 5 min) on the biological activity of SiO2, Zn, ZnO nanoparticles (NPs). The test objects were transplantable Hep-2 cultures (human laryngeal carcinoma cells) and RD (human rhabdomyosarcoma cells) obtained from the Russian collection of cell cultures, the Institute of Cytology, Russian Academy of Sciences (St. Petersburg, Russia). MTT-test was used to determine the cytotoxic effect of the analyzed substances. The cytotoxicity and viability indices were also calculated.

Results. The study of the cytotoxic effect of the above-mentioned nanomedicines demonstrated different characteritics in different nanoparticles. Thus, human rhabdomyosarcoma cells are more susceptible to irradiated Zn and ZnO nanoparticles than human laryngeal carcinoma cells. The difference in the toxicity index is small and it correlates with all time periods of exposure. In case of SiO2 nanoparticles, the opposite effect is observed: medicine irradiated with UV light causes a pronounced negative effect on the cell in comparison with other nanosubstances. The calculation of the viability index made it possible to identify the correlation between the toxicity of the studied substances and the duration of nanoparticle irradiation: the longer the irradiation time, the more cells die.

Conclusion. Additional characteristics of nanoparticles, due to various environmental factors, make it possible to use the substance toxicity as a necessary weapon while fighting against tumor cells, and to evaluate cytotoxicity according to selective biodistribution.

Keywords: nanoparticles, cytotoxicity, cell cultures, photoactive action.

 

References

1. Abbas F., Jan T., Iqbal J., Haider Naqvi M.S. Fe doping induced enhancement in room temperature ferromagnetism and selective cytotoxicity of CeO2 nanoparticles. Current Applied Physics. 2015; 15 (11): 1428–1434.

2. De Stefano D., Carnuccio R., Maiuri M.C. Nanomaterials toxicity and cell death modalities. Journal of drug delivery. 2012; 167896: 1–10.

3. Suetina I.A., Mezentseva M.V., Gushchina E.A., Lisitsin F.A., Russu L.I., Lopatina O.A, Firsova E.L., Tayson D.F., Dzhonson M.E., Khing V. Ostroumov S.A. Vliyanie nanochastits metallov na zhiznesposobnost' i morfofunktsional'nye kharakteristiki kul'tiviruemykh kletok cheloveka i zhivotnykh [Effect of metal nanoparticles on viability and morphofunctional characteristics of cultured human and animal cells]. Kletochnye kul'tury. 2016; 32: 43–53 (in Russian).

4. Wei K., Xu X., Pu X., Hou Z., Zhang Q. Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale Res. Lett. 2011; 6: 1–10.

5. Selivanov N.Y., Selivanova O.G., Sokolov O.I., Sokolova M.K., Sokolov A.O., Bogatyrev V.A., Dykman L.A. Effect of gold and silver nanoparticles on the growth of the Arabidopsis thaliana cell suspension culture. Nanotechnologies in Russia. 2017; 12 (1–2): 116–124.

6. Monopoli M.P., Aberg C., Salvati A., Dawson K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012; 7: 779–786.

7. Casals E., Pfaller T., Duschl A., Oostingh G.J., Puntes V. Hardening of the nanoparticleprotein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small. 2011; 7 (24): 3479–3486.

8. Wang J., Sun P., Bao Y., Liu J., An L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol in Vitro. 2011; 25: 242–250.

9. Shcherbakov A.B. Nanomaterialy na osnove dioksida tseriya: svoystva i perspektivy ispol'zovaniya v biologii i meditsine [Cerium dioxide nanomaterials: Properties and prospects in biology and medicine]. Biotekhnologiya. 2011; 4 (1): 9–28 (in Russian).

10. Sidorenko Yu.S., Zlatnik E.Yu., Peredreeva L.V., Borodulin V.B. Protivoopukholevoe deystvie nanochastits metallov (eksperimental'noe issledovanie) [Antitumor effect of metal nanoparticles (experimental study)]. Izvestiya Samarskogo nauchnogo tsentra RAN. 2009; 5 (2): 482–486 (in Russian).

11. Zhou M., Liu S., Jiang Y., Ma H., Shi M., Wang Q., Zhong W., Liao W., Xing, M.M.Q. Doxorubicin-Loaded Single Wall Nanotube Thermo-Sensitive Hydrogel for Gastric Cancer Chemo-Photothermal Therapy. Adv. Funct. Mater. 2015; 25: 4730–4739.

12. Schipper M.L., Nakayama-Ratchford N., Davis C.R., Kam N.W., Chu P., Liu Z., Sun X., Dai H., Gambhir S.S. Pilot toxicology study of singlewalled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 2008; 3: 216–221.

13. Liu Z., Sun X., Nakayama N., Dai H. Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS Nano. 2007; 1: 50–56.

14. Al Faraj A., Shaik A.S., Ratemi E., Halwani R. Combination of drugconjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. Journal of Controlled Release. 2016; 225: 240–251.

15. Khaydukov E.V., Mironova K.E., Semchishen V.A., Generalova A.N., Nechaev A.V., Khochenkov D.A., Stepanova E.V., Lebedev O.I., Zvyagin A.V., Deyev S.M., Panchenko V.Ya. Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci. Rep. 2016; 6: 35103–35110.

16. Kam N.W.S., O'Connell M., Wisdom J.A., Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA. 2005; 102: 11600–11605.

17. Cherukuri P., Gannon C.J., Leeuw T.K., Schmidt H.K., Smalley R.E., Curley S.A., Weisman R.B. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA. 2006; 103: 18882–18886.

18. Brown S.D., Nativo P., Smith J.A., Stirling D., Edwards P.R., Venugopal B., Flint D.J., Plumb J.A., Graham D., Wheate N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. Journal of the American Chemical Society. 2010; 132 (13): 4678–4684.

19. Hamid R., Bahreyni-Toosi S., Meybodi N.T., Esmaily H. Gold-gold sulphidenanoshellsas a novel intensifier for antitumor effects of radiofrequency field. Iran J. Basic Med. Sci. 2014; 17: 516–521.