Скачать статью

DOI 10.23648/UMBJ.2018.32.22705

УДК 579.63:616.24-008.8.078

 

ОЦЕНКА ВЛИЯНИЯ МИКРОФЛОРЫ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ НА ВОЗМОЖНОСТЬ НЕСТАЦИОНАРНОЙ КОЛОНИЗАЦИИ ДЫХАТЕЛЬНЫХ ПУТЕЙ ПАЦИЕНТОВ С МУКОВИСЦИДОЗОМ

 

О.В. Кондратенко

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России,
г. Самара, Россия

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Цель исследования – оценка возможных рисков микробной колонизации дыхательных путей пациентов с муковисцидозом.

Материалы и методы. Было проведено микробиологическое исследование 176 проб от членов семьи пациента и смывов с объектов с места проживания 17 семей Самарской области, в которых проживают пациенты с муковисцидозом. Посев каждой пробы осуществляли на следующие питательные среды: 5 % кровяной агар, универсальная хромогенная среда, OFPBL-агар для элективного выделения бактерий B. сepacia complex, шоколадный агар, среда Сабуро для культивирования грибов. Посевы инкубировали при 37 и 28 °С в течение 24–48 ч. Посевы на средах OFPBL и Сабуро оставляли до 14 сут культивирования. Идентификацию выделенных культур проводили с помощью MALDI-Tof-масс-спектрометрии на приборе Microflex, Bruker.

Результаты. Выделено 404 штамма микроорганизмов. Среди них – значительное количество штаммов неферментирующих грамотрицательных бактерий, имеющих клиническое значение при муковисцидозе, в т.ч. штаммы Achromobacter spp., Ralstonia spp., Pandorae spp. Установлено, что колонизация дыхательных путей пациентов может осуществляться не только в условиях стационара, но и в быту. Основными источниками при этом могут быть члены семьи пациента, элементы небулайзеров при их недостаточной обработке. Наибольшую опасность представляют места с повышенной влажностью, а именно сливы ванн, раковин, поддоны душевых кабин, а также поддоны сушилок для тарелок на кухне. Пациентам с муковисцидозом следует уделять особое внимание вопросам дезинфекции объектов, которые могут быть контаминированы штаммами грамотрицательных бактерий и грибов.

Ключевые слова: муковисцидоз, окружающая среда, дыхательные пути, бактерии.

 

Литература

1. Проворов Н.А., Тихонович И.А., ред. Генетические основы эволюции бактерий – симбионтов растений. СПб.: Информ-Навигатор; 2016. 240.

2. Goerke C., Kraning K., Stern M. Molecular epidemiology of community-acquired Staphylococcus aureus in families with and without cystic fibrosis patients. J. Infect. Dis. 2000; 181: 984–989.

3. Von Eiff C., Becker K., Machka K. Nasal carriage as a source of Staphylococcus aureus bacteriemia. Study Group. N. Engl. J. Med. 2001; 344: 11–16.

4. Botzenhart K., Doring G. Epidemiology and ecology of Pseudomonas aeruginosa. In: Campa M., Bendinelli M., Friedman H., eds. Pseudomonas aeruginosa as an opportunistic pathogen. New York: Plenum; 1993: 1–18.

5. Doring G., Ulrich M., Muller W. Generation of Pseudomonas aeruginosa aerosols during handwashing from contaminated sink drains, transmission to hands of hospital personnel, and its prevention by use of a new heating device. Zentralbl. Hyg. 1991; 191: 494–505.

6. Bosshammer J., Fiedler B., Gudowius P. Comparative hygienic surveillance of contamination with pseudomonads in cystic fibrosis ward over a 4-year period. J. Hosp. Infect. 1995; 31: 261–274.

7. Pitchford K.C., Corey M., Highsmith A.K. Pseudomonas species contamination of cystic fibrosis patients home inhalation equipment. J. Pediatr. 1987; 111: 212–216.

8. Rosenfield M., Emerson J., Astley S. Home nebulizer use among patients with cystic fibrosis. J. Pediatr. 1998; 132: 125–131.

9. Jakobsson B.M., Onnered A.B., Hjelte L. Low bacterial contamination of nebulizers in home treatment of cystic fibrosis patients. J. Hosp. Infect. 1997; 36: 201–207.

10. Jensen E.T., Gewercman B., Ojeniyi B. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis and the possible role of contamination by dental equipment. J. Hosp. Intect. 1997; 36: 117–122.

11. Halabi M., Wiesholzer-Pittl M., Schoberl J. Non-touch fitting in hospitals: a possible source of Pseudomonas aeruginosa and Legionella spp. J. Hosp. Infect. 2001; 49: 117–121.

12. LiPuma J.J. The Changing Microbial Epidemiology in Cystic Fibrosis. Clin. Microbiol. Rev. 2010; 23 (2): 299–323.

13. Romling U., Wingender J., Muller H., Tummler B. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl. Environ. Microboil. 1994; 60: 1734–1738.

14. Doring G., Hoiby N. Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J. Cyst. Fibrosis. 2004; 3: 67–91.

15. Campana S., Tacetti G., Ravenni F. Tramsmission of Burkholderia cepacia complex: evidence for new epidemic clones infecting cystic fibrosis patients in Italy. J. Clin. Microbiol. 2005; 43: 5136–5142.

16. Coenye T., Spilker T., Van Schoor A. Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe. Thorax. 2004; 59: 952–954.

17. Fisher M.C., LiPuma J.J., Dasen E. Source of Pseudomonas cepacia: ribotyping of isolated from patients and from the environment. J. Pediatr. 1993; 123: 745–747.

18. LiPuma J.J., Spilker T., Coenye T. An epidemic Burkholderia cepacia complex strain identificied in soil. Lancet. 2003; 359: 2002–2003.

19. Govan J.R., Brown A.R., Jones A.M. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol. 2007; 2: 153–164.

20. Mortensen J.E., Fischer M.C., LiPuma J.J. Recovery of Pseudomonas cepacia and other Pseudomonas species from the environment. Infect. Control. Hosp. Epidemoil. 1995; 16: 30–32.

21. Baldwin A., Mahenthiralingam E., Drevenik P. Environmental Burkholderia cepacia complex isolated in human infections. Emerg. Infect. Dis. 2007; 13: 458–461.

 

Download  article

DOI 10.23648/UMBJ.2018.32.22705

 

IMPACT OF MICROFLORA OF ENVIRONMENTAL MEDIUM ON AMBULATORY AIRWAY COLONIZATION IN PATIENTS WITH CYSTIC FIBROSIS

 

O.V. Kondratenko

Samara State Medical University, Ministry of Health of the Russian Federation, Samara, Russia

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

The aim of the study is to evaluate possible risks of respiratory tract microbial colonization in patients with cystic fibrosis.

Materials and Methods. The authors conducted microbiological studies of 176 samples from family members and swabs from various objects taken in 17 families, in which patients with cystic fibrosis live. The research was conducted in Samara region. Each sample was analyzed for following culture media: 5 % blood agar, universal chromogenic culture medium, OFPBL-agar for elective isolation of B. sepacia complex bacteria, chocolate agar, and Saburo medium for fungi cultivation. Inoculations were incubated for 24–48 hours; the temperature was 37 and 28 °C. On OFPBL and Saburo media inoculations were left for incubation for 14 days. MALDI-Tof-mass spectrometry (Microflex, Bruker) was used to identify the isolated cultures. In general, 404 microbial strains were isolated. Among them there were many strains of non-fermentative gram-negative bacteria, which are of clinical importance in case of cystic fibrosis, namely Achromobacter spp., Ralstonia spp., Pandorae spp. It has been established that colonization of patients’ respiratory tract can occur not only in a clinical setting, but also in everyday life. The main sources of invasion are family members or nebulizers if they are insufficiently processed. The most dangerous places, where people can catch an infection, are the bathtub sinks, kitchen sinks, shower cabins, and dish racks in the kitchen. Patients with cystic fibrosis should pay special attention to disinfection of objects that may be contaminated by strains of gram-negative bacteria and fungi.

Keywords: cystic fibrosis, environment, respiratory tract, bacteria.

 

References

1. Provorov N.A., Tikhonovich I.A. Geneticheskie osnovy evolyutsii bakteriy – simbiontov rasteniy [Genetic basis of bacteria (symbiotic plants) evolution]. St. Petersburg: Inform-Navigator; 2016. 240 (in Russian).

2. Goerke C., Kraning K., Stern M. Molecular epidemiology of community-acquired Staphylococcus aureus in families with and without cystic fibrosis patients. J. Infect. Dis. 2000; 181: 984–989.

3. Von Eiff C., Becker K., Machka K. Nasal carriage as a source of Staphylococcus aureus bacteriemia. Study Group. N. Engl. J. Med. 2001; 344: 11–16.

4. Botzenhart K., Doring G. Epidemiology and ecology of Pseudomonas aeruginosa. In: Campa M., Bendinelli M., Friedman H., eds. Pseudomonas aeruginosa as an opportunistic pathogen. New York: Plenum; 1993: 1–18.

5. Doring G., Ulrich M., Muller W. Generation of Pseudomonas aeruginosa aerosols during handwashing from contaminated sink drains, transmission to hands of hospital personnel, and its prevention by use of a new heating device. Zentralbl. Hyg. 1991; 191: 494–505.

6. Bosshammer J., Fiedler B., Gudowius P. Comparative hygienic surveillance of contamination with pseudomonads in cystic fibrosis ward over a 4-year period. J. Hosp. Infect. 1995; 31: 261–274.

7. Pitchford K.C., Corey M., Highsmith A.K. Pseudomonas species contamination of cystic fibrosis patients home inhalation equipment. J. Pediatr. 1987; 111: 212–216.

8. Rosenfield M., Emerson J., Astley S. Home nebulizer use among patients with cystic fibrosis.
J. Pediatr. 1998; 132: 125–131.

9. Jakobsson B.M., Onnered A.B., Hjelte L. Low bacterial contamination of nebulizers in home treatment of cystic fibrosis patients. J. Hosp. Infect. 1997; 36: 201–207.

10. Jensen E.T., Gewercman B., Ojeniyi B. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis and the possible role of contamination by dental equipment. J. Hosp. Intect. 1997; 36: 117–122.

11. Halabi M., Wiesholzer-Pittl M., Schoberl J. Non-touch fitting in hospitals: a possible source of Pseudomonas aeruginosa and Legionella spp. J. Hosp. Infect. 2001; 49: 117–121.

12. LiPuma J.J. The Changing Microbial Epidemiology in Cystic Fibrosis. Clin. Microbiol. Rev. 2010; 23 (2): 299–323.

13. Romling U., Wingender J., Muller H., Tummler B. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl. Environ. Microboil. 1994; 60: 1734–1738.

14. Doring G., Hoiby N. Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J. Cyst. Fibrosis. 2004; 3: 67–91.

15. Campana S., Tacetti G., Ravenni F. Tramsmission of Burkholderia cepacia complex: evidence for new epidemic clones infecting cystic fibrosis patients in Italy. J. Clin. Microbiol. 2005; 43: 5136–5142.

16. Coenye T., Spilker T., Van Schoor A. Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe. Thorax. 2004; 59: 952–954.

17. Fisher M.C., LiPuma J.J., Dasen E. Source of Pseudomonas cepacia: ribotyping of isolated from patients and from the environment. J. Pediatr. 1993; 123: 745–747.

18. LiPuma J.J., Spilker T., Coenye T. An epidemic Burkholderia cepacia complex strain identificied in soil. Lancet. 2003; 359: 2002–2003.

19. Govan J.R., Brown A.R., Jones A.M. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol. 2007; 2: 153–164.

20. Mortensen J.E., Fischer M.C., LiPuma J.J. Recovery of Pseudomonas cepacia and other Pseudomonas species from the environment. Infect. Control. Hosp. Epidemoil. 1995; 16: 30–32.

21. Baldwin A., Mahenthiralingam E., Drevenik P. Environmental Burkholderia cepacia complex isolated in human infections. Emerg. Infect. Dis. 2007; 13: 458–461.