Download  article

DOI 10.34014/2227-1848-2019-3-106-113

 

FATTY ACID COMTENTS IN RAT ADIPOSE TISSUES UNDER ANAEROBIC EXERCISE AND HIGH-CALORIE DIETS

 

I.Yu. Yakimovich1, M.Yu. Kotlovskiy2, S.V. Gusakova1, V.V. Ivanov1, V.N. Vasil'ev1, A.M. Dygay2, I.V. Dolgalev1, A.V. Panimaskina1, L.Yu. Kotlovskaya2, Yu.O. Samoylova1

1 Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia;

2 Goldberg Research Institute of Pharmacology and Regenerative Medicine,Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

The objective of the paper is to study the effects of anaerobic exercise on fatty acids percentage in adipose tissues of different localization under high-calorie diets in rats.

Materials and Methods. The authors examined Wistar rats under high calorie diets (32 % fat content). In the first group the animals were not exposed to any physical exercise. In the second group rats were exposed to anaerobic physical activity, namely swimming. The percentage of 24 fatty acids (FA) and the value of 14 integrative indicators (complexes) in the depot of visceral and subcutaneous adipose tissues were determined using chromatography-mass spectrometry (Agilent Technologies, USA).

Results. Anaerobic exercise led to an increase in saturated FAs in the mesenteric adipose tissues and to a decrease in unsaturated FAs, as well as to a decrease in the unsaturation index; an increase in the retroperitoneal adipose tissue of the FA sphingophospholipid substrates, FA membrane substrates, a decrease in the energy substrates, an increase of vitamin F FA substrates due to ω6 of unsaturated FAs. At the same time, a decrease in the amount of polyunsaturated FAs was observed in the subcutaneous depot, and the balance between ω3/ω6 shifted towards ω6 of unsaturated FAs. In the mesenteric and retroperitoneal adipose tissues, there was a decrease in monounsaturated FAs due to ω9 of unsaturated FAs, and the ratio of saturated FAs/monounsaturated FAs shifted towards saturated FAs. Only in retroperitoneal adipose tissues there was a decrease in ω7 of saturated FAs due to C16: 1 ω7.

Conclusion. Regular anaerobic exercise and a high-calorie diet showed the most pronounced effect on FAs in visceral adipose tissues, namely in mesenteric and retroperitoneal tissues.

Keywords: fatty acids, fatty acid complexes, adipose tissues, anaerobic exercise, high-calorie diet.

 

References

  1. Vegiopoulos A., Rohm M., Herzig S. Adipose tissue: between the extremes. EMBO J. 2017; 36 (4): 1999–2017.

  2. Petridou A., Nikolaidis M.G., Matsakas A. Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue. Eur. J. Appl. Physiol. 2005; 94 (1–2): 84–92.

  3. Tchkonia T., Thomou T., Zhu Y., Karagiannides I., Pothoulakis C., Jensen M.D., Kirkland J.L. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013; 17 (5): 644–656.

  4. Thompson D., Karpe F., Lafontan M., Frayn Kh. Physical Activity and Exercise in the Regulation of Human Adipose Tissue Physiology. Physiological Reviews. 2012; 92 (1): 157–191. DOI: 10.1152/physrev.00012.2011.

  5. Shen Y., Xu X., Yue K., Xu G. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats. Obesity (Silver Spring). 2015; 23 (5): 1000–1006.

  6. Costill D.L., Wilmore J.H., Kenney W.L. Physiology of sport and Exercise. Champaign: Human Kinetics; 2012. 621.

  7. Gibala M.J., Little J.P., Macdonald M.J., Hawley J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012; 590: 1077–1084.

  8. Kim Jong-Hee, Park Y. Сombined effects of phytochemicals and exercise on fatty acid oxidation. J. Exerc. Nutrition Biochem. 2016; 20 (4): 20–26. DOI: 10.20463/jenb.2016.0053.

  9. Folch J. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957; 226 (1): 497–509.

  10. Watt M.J., Spriet L.L. Triacylglycerol lipases and metabolic control: implications for health and disease. Am. J. Physiol. Metab. 2010; 299: 162–168.

  11. Gillingham L.G., Gustafson J.A., Han S.Y. High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hyper cholesterolaemic subjects. Br. J. Nutr. 2011; 105 (3): 417–427.

  12. Titov V.N. Transport lipoproteidami nasyshchennykh i polienovykh zhirnykh kislot [Lipoprotein transport of saturated and polyene fatty acids]. Uspekhi sovremennoy biologii. 1997; 117 (2): 240–253 (in Russian).

  13. Boldyrev A.A., Kyayvyaryaynen E.I., Ilyukha V.A. Biomembranologiya: uchebnoe posobie [Biomembranology: manual]. Petrozavodsk: Izd-vo Kar NTs RAN; 2006. 226 (in Russian).

  14. Frayn K.N., Hodson L., Karpe F. Dietary fat and insulin sensitivity. Diabetologia. 2010; 53 (5): 799–801.

  15. Aldámiz-Echevarría L., Prieto J., Andrade F., Elorz J., Sanjurjo P., Soriano J.R. Arachidonic Acid Content in Adipose Tissue Is Associated With Insulin Resistance in Healthy Children. Journal of Pediatric Gastroenterology and Nutrition. 2007; 44 (1): 77–83.

  16. Severin E.S., ed. Biokhimiya: uchebnik [Biochemistry: textbook]. 5-e izd., ispr. i dop. Moscow: GEOTAR-Media; 2016. 768 (in Russian).

  17. Grosfeld A., Zilberfarb V., Turban S., Andre J., Guerre-Millo M., Issad T. Hypoxia increases leptin expression in human PAZ6 adipose cells. Diabetologia. 2002; 45: 527–530.

  18. Titov V.N., Lisitsyn D.M., Razumovskiy S.D. Metodicheskie voprosy i diagnosticheskoe znachenie opredeleniya perekisnogo okisleniya lipidov v lipoproteinakh nizkoy plotnosti. Oleinovaya kislota kak biologicheskiy antioksidant (obzor literatury) [Methodological issues and diagnostic value of lipid peroxidation detection in low density lipoproteins. Oleic acid as a biological antioxidant (review)]. Klinicheskaya laboratornaya diagnostika. 2005; 4: 3–10 (in Russian).

  19. Smidt K. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol. Cell Endocrinol. 2007; 264 (1/2): 68–73.

  20. Peter A., Weigert C., Staiger H. Individual stearoyl-coadesaturase 1 expression modulates endoplasmic reticulumstress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo. Diabetes. 2009; 58: 1757–1765.

  21. Gennis R. Biomembrany. Molekulyarnaya struktura i funktsiya [Biomembranes. Molecular structure and function]. Moscow: Mir; 1997. 624 (in Russian).

  22. Heitzer T., Schlinzig T., Krohn K. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001; 104: 2673–2678.

  23. Hwang D. Fatty acids and immune responses – a new perspective in searching for clues to mechanisms. Ann. Rev. Nutr. 2000; 20: 431–456.

  24. Ni Y., Zhao L., Yu H., Ma X., Bao Y., Rajani C. Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine. 2015; 2 (10): 1513–1522.

 

Скачать статью

УДК 612.397.23:591.826:613.25:796.015.574]-092.9:599.323.4

DOI 10.34014/2227-1848-2019-3-106-113

 

СОДЕРЖАНИЕ ЖИРНЫХ КИСЛОТ В ЖИРОВОЙ ТКАНИ КРЫС ПРИ АНАЭРОБНОЙ ФИЗИЧЕСКОЙ НАГРУЗКЕ НА ФОНЕ ПИТАНИЯ ПОВЫШЕННОЙ КАЛОРИЙНОСТИ

 

И.Ю. Якимович1, М.Ю. Котловский2, С.В. Гусакова1, В.В. Иванов1, В.Н. Васильев1, А.М. Дыгай2, И.В. Долгалев1, А.В. Панимаскина1, Л.Ю. Котловская2, Ю.О. Самойлова1

1 ФГБОУ ВО «Сибирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Томск, Россия;

2 НИИ фармакологии и регенеративной медицины им. Е.Д. Гольдберга ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук», г. Томск, Россия

e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Цель – исследовать воздействие анаэробной физической нагрузки на процентное содержание жирных кислот в жировой ткани разной локализации на фоне питания повышенной калорийности у крыс.

Материалы и методы. В исследовании использовали крыс линии Wistar, находящихся на питании повышенной калорийности (с долей жира 32 %). В первой группе животных физическая нагрузка отсутствовала, крысы второй группы получали физическую нагрузку преимущественно анаэробного характера в виде плавания. Процентное содержание 24 жирных кислот (ЖК) и значение 14 интегративных показателей (комплексов) в депо висцеральной и подкожной жировой ткани определяли на хромато-масс-спектрометре (Аgilent Technologies, США).

Результаты. Анаэробная физическая нагрузка привела к увеличению содержания в мезентеральной жировой ткани насыщенных ЖК (НасЖК) и снижению ненасыщенных ЖК (НЖК), а также снижению индекса ненасыщенности; увеличению в забрюшинной жировой ткани ЖК-субстратов сфингофосфолипидов, ЖК-субстратов мембран, снижению субстратов энергии, увеличению содержания ЖК-субстратов витамина F за счет ω6 НЖК. При этом в подкожном депо наблюдалось снижение суммы полиненасыщенных ЖК, а баланс ω3/ω6 сместился в сторону ω6 НЖК. В мезентериальной и забрюшинной жировой ткани отмечалось снижение содержания мононенасыщенных ЖК (МНЖК) за счет ω9 НЖК, а соотношение НасЖК/МНЖК сместилось в сторону НасЖК. Только в забрюшинной жировой ткани было установлено снижение содержания ω7 НЖК за счет С16:1 ω7.

Выводы. Регулярная анаэробная физическая нагрузка на фоне питания повышенной калорийности продемонстрировала наиболее выраженное влияние в отношении ЖК в висцеральной жировой ткани, а именно в мезентериальной и забрюшинной.

Ключевые слова: жирные кислоты, комплексы жирных кислот, жировая ткань, анаэробная физическая нагрузка, диета повышенной калорийности.

 

Литература

  1. Vegiopoulos A., Rohm M., Herzig S. Adipose tissue: between the extremes. EMBO J. 2017; 36 (4): 1999–2017.

  2. Petridou A., Nikolaidis M.G., Matsakas A. Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue. Eur. J. Appl. Physiol. 2005; 94 (1–2): 84–92.

  3. Tchkonia T., Thomou T., Zhu Y., Karagiannides I., Pothoulakis C., Jensen M.D., Kirkland J.L. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013; 17 (5): 644–656.

  4. Thompson D., Karpe F., Lafontan M., Frayn Kh. Physical Activity and Exercise in the Regulation of Human Adipose Tissue Physiology. Physiological Reviews. 2012; 92 (1): 157–191. DOI: 10.1152/physrev.00012.2011.

  5. Shen Y., Xu X., Yue K., Xu G. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats. Obesity (Silver Spring). 2015; 23 (5): 1000–1006.

  6. Costill D.L., Wilmore J.H., Kenney W.L. Physiology of sport and Exercise. Champaign: Human Kinetics; 2012. 621.

  7. Gibala M.J., Little J.P., Macdonald M.J., Hawley J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012; 590: 1077–1084.

  8. Kim Jong-Hee, Park Y. Сombined effects of phytochemicals and exercise on fatty acid oxidation. J. Exerc. Nutrition Biochem. 2016; 20 (4): 20–26. DOI: 10.20463/jenb.2016.0053.

  9. Folch J. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957; 226 (1): 497–509.

  10. Watt M.J., Spriet L.L. Triacylglycerol lipases and metabolic control: implications for health and disease. Am. J. Physiol. Metab. 2010; 299: 162–168.

  11. Gillingham L.G., Gustafson J.A., Han S.Y. High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hyper cholesterolaemic subjects. Br. J. Nutr. 2011; 105 (3): 417–427.

  12. Титов В.Н. Транспорт липопротеидами насыщенных и полиеновых жирных кислот. Успехи современной биологии. 1997; 117 (2): 240–253.

  13. Болдырев А.А., Кяйвяряйнен Е.И., Илюха В.А. Биомембранология: учебное пособие. Петрозаводск: Изд-во Кар НЦ РАН; 2006. 226.

  14. Frayn K.N., Hodson L., Karpe F. Dietary fat and insulin sensitivity. Diabetologia. 2010; 53 (5): 799–801.

  15. Aldámiz-Echevarría L., Prieto J., Andrade F., Elorz J., Sanjurjo P., Soriano J.R. Arachidonic Acid Content in Adipose Tissue Is Associated With Insulin Resistance in Healthy Children. Journal of Pediatric Gastroenterology and Nutrition. 2007; 44 (1): 77–83.

  16. Северин Е.С., ред. Биохимия: учебник. 5-е изд., испр. и доп. Москва: ГЭОТАР-Медиа; 2016. 768.

  17. Grosfeld A., Zilberfarb V., Turban S., Andre J., Guerre-Millo M., Issad T. Hypoxia increases leptin expression in human PAZ6 adipose cells. Diabetologia. 2002; 45: 527–530.

  18. Титов В.Н., Лисицын Д.М., Разумовский С.Д. Методические вопросы и диагностическое значение определения перекисного окисления липидов в липопротеинах низкой плотности. Олеиновая кислота как биологический антиоксидант (обзор литературы). Клиническая лабораторная диагностика. 2005; 4: 3–10.

  19. Smidt K. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol. Cell Endocrinol. 2007; 264 (1/2): 68–73.

  20. Peter A., Weigert C., Staiger H. Individual stearoyl-coadesaturase 1 expression modulates endoplasmic reticulumstress and inflammation in human myotubes and is associated with skeletal muscle lipid storage and insulin sensitivity in vivo. Diabetes. 2009; 58: 1757–1765.

  21. Геннис Р. Биомембраны. Молекулярная структура и функция. Москва: Мир; 1997. 624.

  22. Heitzer T., Schlinzig T., Krohn K. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001; 104: 2673–2678.

  23. Hwang D. Fatty acids and immune responses – a new perspective in searching for clues to mechanisms. Annu. Rev. Nutr. 2000; 20: 431–456.

  24. Ni Y., Zhao L., Yu H., Ma X., Bao Y., Rajani C. Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine. 2015; 2 (10): 1513–1522.