Download  article

DOI 10.34014/2227-1848-2020-3-21-27

 

COVID-19 PNEUMONIA: THE POINT OF VIEW OF VASCULAR SPECIALIST

 

Luca Costanzo1, Simona Antonina Grasso2, Francesco Paolo Palumbo3, Giorgio Ardita1, Luigi Di Pino4, Pier Luigi Antignani5, Leonardo Aluigi6, Enrico Arosio7, Giacomo Failla1

1 Angiology Unit, San Marco Hospital, Department of cardiovascular disease, AOU Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy;

2 Department of Anesthesia and Intensive Care, San Marco Hospital, AOU Policlinico “G. Rodolico-San Marco”, Catania, Italy;

3 Surgery Unit, Villa Fiorita Clinic, Prato, Italy;

4 Cardiology and Angiology, Department of cardiovascular disease, C.A.S.T., A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy;

5 Vascular center, Nuova Villa Claudia – Rome, Italy;

6 Angiology, Care Unit Villalba, Bologna, Italy;

7 University of Verona, Verona, Italy

 

The development of coagulopathy is emerging as one of the most significant poor prognostic features in COVID-19 pneumopathy. Thromboembolic manifestations such as pulmonary embolism and disseminated intravascular coagulation (DIC) have been reported and resulted in poor prognosis for the patient.

Starting from the evidence in the literature, the purpose of this paper is to analyze potential mechanism involved in coagulation impairment following COVID-19 infection and identify possible vascular therapeutic strategies.

D-dimer, a protein product of fibrin degradation, has been found elevated in the most severe cases and correlated to mortality. Potentially involved factors in the impairment of coagulation caused by viral infection include the dysregulated inflammatory response, platelet and endothelial dysfunction with impaired fibrinolysis. Heparin is an anticoagulant molecule that also showed anti-inflammatory properties and a potential antiviral effect. A favorable outcome was highlighted with the use of LMWH in severe patients with COVID-19 who meet the SIC criteria (sepsis-induced coagulopathy) or with markedly high D-dimer. The use of low molecular weight heparin could prevent thromboembolic complications in COVID-19 pneumopathy. However, the correct timing of prophylaxis according to the stage of COVID-19 disease and the appropriate therapeutic dosage to use in severe cases need further researches.

Keywords: COVID-19, pneumonia, thrombosis, coagulopathy, D-dimer, low molecular weight heparin.

Conflict of interest. The authors declare no conflict of interest.

Authors’ contributions: all authors contributed to the conception and design of manuscript. LC wrote the manuscript, SAG, FPP, GA, LDP, PLA, LA, EA, GF contributed by reading and improving the manuscript.

 

References

  1. Chen, Jianpu and Wang, Xiang and Zhang, Shutong and Liu, Bin and Wu, Xiaoqing and Wang, Yanfang and Wang, Xiaoqi and Yang, Ming and Sun, Jianqing and Xie, Yuanliang. Findings of Acute Pulmonary Embolism in COVID-19 Patients (3/1/2020). Available at SSRN: https://ssrn.com/abstract=3548771 or http://dx.doi.org/10.2139/ssrn.3548771.

  2. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18: 844–847.

  3. Goeijenbier M., van Wissen M., van de Weg C., Jong E., Gerdes V.E., Meijers J.C., Brandjes D.P., van Gorp E.C. Review: Viral infections and mechanisms of thrombosis and bleeding. J. Med. Virol. 2012; 84: 1680–1696.

  4. Branchford B.R., Carpenter S.L. The Role of Inflammation in Venous Thromboembolism. Front. Pediatr. 2018; 6: 142.

  5. Xu J., Lupu F., Esmon C.T. Inflammation, innate immunity and blood coagulation. Hamostaseologie. 2010; 30: 5–9.

  6. Esmon C.T., Xu J., Lupu F. Innate immunity and coagulation. J. Thromb. Haemost. 2011; 9: 182–188.

  7. Fuchs T.A., Brill A., Wagner D.D. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler. Thromb. Vasc. Biol. 2012; 32: 1777–1783.

  8. Li J., Hara H., Wang Y., Esmon C., Cooper D.K.C., Iwase H. Evidence for the important role of inflammation in xenotransplantation. J. Inflamm. (Lond.). 2019; 16: 10.

  9. Shorr A.F., Thomas S.J., Alkins S.A. D-dimer correlates with proinflammatory cytokine levels and outcomes in critically ill patients. Chest. 2002; 121: 1262–1268.

  10. Wu Y.P., Wei R., Liu Z.H., Chen B., Lisman T., Ren D.L., Han J.J., Xia Z.L., Zhang F.S., Xu W.B., Preissner K.T., de Groot P.G. Analysis of thrombotic factors in severe acute respiratory syndrome (SARS) patients. Thromb. Haemost. 2006; 96: 100–101.

  11. Hwang D.M., Chamberlain D.W., Poutanen S.M., Low D.E., Asa S.L., Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol. 2005; 18: 1–10.

  12. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. J. Pathol. 2015; 235: 185–195.

  13. Levi M. Disseminated intravascular coagulation. Crit. Care Med. 2007; 35: 2191–2195.

  14. Wiwanitkit V. Hemostatic disorders in bird flu infection. Blood Coagul. Fibrinolysis. 2008; 19: 5–6.

  15. Alquwaizani M., Buckley L., Adams C., Fanikos J. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013; 1, 83–97.

  16. Brinkhous K., Smith H., Warner E., Seegers W. The Inhibition of Blood Clotting: An Unidentified Substance Which Acts in Conjunction with Heparin to Prevent the Conversion of Prothrombin into Thrombin. Am. J. Physiol. 1939; 125: 683–687.

  17. Lindahl U., Bäckström G., Höök M., Thunberg L., Fransson L.A., Linker A. Structure of the Antithrombin-Binding Site in Heparin. Proc. Natl. Acad. Sci. USA. 1979; 76: 3198–3202.

  18. Hirsh J., Warkentin T.E., Shaughnessy S.G., Anand S.S., Halperin J.L., Raschke R., Granger C., Ohman E.M., Dalen J.E. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001; 119: 64S–94S.

  19. Zhang Y., Zhang M., Tan L., Pan N., Zhang L. The clinical use of Fondaparinux: A synthetic heparin pentasaccharide. Prog. Mol. Biol. Transl. Sci. 2019; 163: 41–53.

  20. Johnston A., Hsieh S.C., Carrier M., Kelly S.E., Bai Z., Skidmore B. A systematic review of clinical practice guidelines on the use of low molecular weight heparin and fondaparinux for the treatment and prevention of venous thromboembolism: implications for research and policy decision-making. PLoS One. 2018; 13: e0207410.

  21. Mousavi S., Moradi M., Khorshidahmad T., Motamedi M. Anti-Inflammatory Effects of Heparin and Its Derivatives: A Systematic Review. Adv. Pharmacol. Sci. 2015; 2015: 507151.

  22. Oduah E.I., Linhardt R.J., Sharfstein S.T. Heparin: Past, Present, and Future. Pharmaceuticals. 2016; 9.

  23. Thachil J. The versatile heparin in COVID-19. J. Thromb. Haemost. 2020 [Epub ahead of print].

  24. Iba T., Hashiguchi N., Nagaoka I., Tabe Y., Kadota K., Sato K. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med. Exp. 2015; 3: 36.

  25. Zhu C., Liang Y., Li X., Chen N., Ma X. Unfractionated heparin attenuates histone-mediated cytotoxicity in vitro and prevents intestinal microcirculatory dysfunction in histone-infused rats. J. Trauma Acute Care Surg. 2019; 87: 614–622.

  26. Ma J., Bai J. Protective effects of heparin on endothelial cells in sepsis. Int. J. Clin. Exp. Med. 2015; 8: 5547–5552.

  27. Shukla D., Spear P.G. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest. 2001; 108: 503–510.

  28. Ghezzi S., Cooper L., Rubio A., Pagani I., Capobianchi M.R., Ippolito G. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells. Antiviral Res. 2017; 140: 13–17.

  29. Vicenzi E., Canducci F., Pinna D., Mancini N., Carletti S., Lazzarin A. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg. Infect. Dis. 2004; 10: 413–418.

  30. Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur. Heart J. 2020; Mar 30 [Epub ahead of print].

  31. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020 [Epub ahead of print].

  32. Xie Y., Wang X., Yang P., Zhang S. COVID-19 Complicated by Acute Pulmonary Embolism. Radiology: Cardiothoracic Imaging. 2020; 2.

Received 25 June 2020; accepted 03 August 2020.

 

Information about the authors

Luca Costanzo, MD, San Marco Hospital, Department of cardiovascular disease, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy. Via Antonello da Messina 75 – 95021 Acicastello, Catania – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-3595-3461

Simona Antonina Grasso, MD, Department of Anesthesia and Intensive Care, San Marco Hospital, AOU Policlinico “G. Rodolico-San Marco”, Catania, Italy. Via Rosso di San Secondo 17 – 95128 Catania – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0001-8930-9714

Francesco Paolo Palumbo, MD, Surgery Unit, Villa Fiorita Clinic, Prato, Italy. Viale Del Ciclope 14 – 90149 Palermo – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-3121-6579

Giorgio Ardita, MD, San Marco Hospital, Department of cardiovascular disease, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy. Via Pavia 7 – 95123 Catania – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-2535-3967

Luigi Di Pino, PhD, MD, professor, Cardiology and Angiology, Department of cardiovascular disease, C.A.S.T., A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy. Via Ungaretti 1/R, 95014 Giarre, Catania – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-4442-7199

Pier Luigi Antignani, PhD, MD, professor, Vascular center, Nuova Villa Claudia – Rome, Italy. Via Germanico 211 – 00192 – Rome – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-3982-5275

Leonardo Aluigi, PhD, MD, professor, Angiology, Care Unit Villalba, Bologna, Italy. Via Giulietta Masina 5 40016 San Giorgio di Piano (BO) – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0001-8507-1585

Enrico Arosio, PhD, MD, professor, University of Verona, Verona, Italy. Via Porto San Pancrazio 111 – 37133 – Verona – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-6702-9727

Giacomo Failla, MD, San Marco Hospital, Department of cardiovascular disease, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy. Via A Di Sangiuliano 50, Sant’Agata Li Battiati 95030 Catania, Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-1327-3908

 

For citation

Luca Costanzo, Simona Antonina Grasso, Francesco Paolo Palumbo, Giorgio Ardita, Luigi Di Pino, Pier Luigi Antignani, Leonardo Aluigi, Enrico Arosio, Giacomo Failla.. COVID-19 Pneumonia: the Point of View of Vascular Specialist. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2020; 3: 21–27. DOI: 10.34014/2227-1848-2020-3-21-27.

 

Скачать статью

УДК 616.9:578.834.1

DOI 10.34014/2227-1848-2020-3-21-27

 

ПНЕВМОНИЯ ПРИ COVID-19: ВЗГЛЯД СОСУДИСТОГО ХИРУРГА

 

Лука Костанцо1, Симона Антонина Грассо2, Франческо Паоло Палумбо3, Джорджио Ардита1, Луиджи Ди Пино4, Пьер Луиджи Антиньяни5, Леонардо Алуиджи6, Энрико Арозио7, Джакомо Файлла1

1 Отделение ангиологии больницы Сан-Марко, отделение сердечно-сосудистых заболеваний, поликлиника Родолико-Сан-Марко, Катанийский университет, г. Катания, Италия;

2 Отделение анестезии и интенсивной терапии больницы Сан-Марко, поликлиника Родолико-Сан-Марко, г. Катания, Италия;

3 Операционное отделение клиники Вилла Фиорита, г. Прато, Италия;

4 Кардиология и ангиология, отделение сердечно-сосудистых заболеваний,поликлиника Витторио Эмануэле, Катанийский университет, г. Катания, Италия;

5 Сосудистый центр, Нуова Вилла Клаудиа, г. Рим, Италия;

6 Ангиология, Медицинское отделение Виллалба, г. Болонья, Италия;

7 Университет Вероны, г. Верона, Италия

 

Одним из наиболее неблагоприятных прогностических признаков пневмопатии при COVID-19 является развитие коагулопатии. У пациентов с COVID-19 наблюдались признаки тромбоэмболии, например тромбоэмболия легочной артерии и ДВС-синдром, что негативно сказывалось на здоровье пациента.

Целью исследования является анализ потенциального механизма нарушения свертывания крови у пациентов, перенесших COVID-19, и определение возможных терапевтических стратегий.

Было обнаружено, что у пациентов с тяжелой формой заболевания уровень D-димера, белкового продукта распада фибрина, повышен и напрямую взаимосвязан со смертностью. К факторам, влияющим на нарушение коагуляции, вызванной вирусной инфекцией, относятся неуправляемый воспалительный процесс, тромбоцитарная и эндотелиальная дисфункция с нарушением фибринолиза.

Гепарин, являясь прямым антикоагулянтом, также обладает противовоспалительными свойствами и выраженным противовирусным эффектом. Благоприятный исход наблюдался при использовании низкомолекулярного гепарина у тяжелых пациентов с COVID-19 с коагулопатией, вызванной сепсисом, или высоким уровнем D-димера.

Использование низкомолекулярного гепарина может предотвратить тромбоэмболические осложнения пневмопатии у пациентов с COVID-19. Тем не менее точное время профилактики в зависимости от стадии заболевания COVID-19 и соответствующая терапевтическая дозировка, которая может быть использована в тяжелых случаях, требуют дальнейших исследований.

Ключевые слова: COVID-19, пневмония, тромбоз, коагулопатия, D-димер, низкомолекулярный гепарин.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

 

Литература

  1. Chen, Jianpu and Wang, Xiang and Zhang, Shutong and Liu, Bin and Wu, Xiaoqing and Wang, Yanfang and Wang, Xiaoqi and Yang, Ming and Sun, Jianqing and Xie, Yuanliang. Findings of Acute Pulmonary Embolism in COVID-19 Patients (3/1/2020). Available at SSRN: https://ssrn.com/abstract=3548771 or http://dx.doi.org/10.2139/ssrn.3548771.

  2. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18: 844–847.

  3. Goeijenbier M., van Wissen M., van de Weg C., Jong E., Gerdes V.E., Meijers J.C., Brandjes D.P., van Gorp E.C. Review: Viral infections and mechanisms of thrombosis and bleeding. J. Med. Virol. 2012; 84: 1680–1696.

  4. Branchford B.R., Carpenter S.L. The Role of Inflammation in Venous Thromboembolism. Front. Pediatr. 2018; 6: 142.

  5. Xu J., Lupu F., Esmon C.T. Inflammation, innate immunity and blood coagulation. Hamostaseologie. 2010; 30: 5–9.

  6. Esmon C.T., Xu J., Lupu F. Innate immunity and coagulation. J. Thromb. Haemost. 2011; 9: 182–188.

  7. Fuchs T.A., Brill A., Wagner D.D. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler. Thromb. Vasc. Biol. 2012; 32: 1777–1783.

  8. Li J., Hara H., Wang Y., Esmon C., Cooper D.K.C., Iwase H. Evidence for the important role of inflammation in xenotransplantation. J. Inflamm. (Lond.). 2019; 16: 10.

  9. Shorr A.F., Thomas S.J., Alkins S.A. D-dimer correlates with proinflammatory cytokine levels and outcomes in critically ill patients. Chest. 2002; 121: 1262–1268.

  10. Wu Y.P., Wei R., Liu Z.H., Chen B., Lisman T., Ren D.L., Han J.J., Xia Z.L., Zhang F.S., Xu W.B., Preissner K.T., de Groot P.G. Analysis of thrombotic factors in severe acute respiratory syndrome (SARS) patients. Thromb. Haemost. 2006; 96: 100–101.

  11. Hwang D.M., Chamberlain D.W., Poutanen S.M., Low D.E., Asa S.L., Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol. 2005; 18: 1–10.

  12. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. J. Pathol. 2015; 235: 185–195.

  13. Levi M. Disseminated intravascular coagulation. Crit. Care Med. 2007; 35: 2191–2195.

  14. Wiwanitkit V. Hemostatic disorders in bird flu infection. Blood Coagul. Fibrinolysis. 2008; 19: 5–6.

  15. Alquwaizani M., Buckley L., Adams C., Fanikos J. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013; 1, 83–97.

  16. Brinkhous K., Smith H., Warner E., Seegers W. The Inhibition of Blood Clotting: An Unidentified Substance Which Acts in Conjunction with Heparin to Prevent the Conversion of Prothrombin into Thrombin. Am. J. Physiol. 1939; 125: 683–687.

  17. Lindahl U., Bäckström G., Höök M., Thunberg L., Fransson L.A., Linker A. Structure of the Antithrombin-Binding Site in Heparin. Proc. Natl. Acad. Sci. USA. 1979; 76: 3198–3202.

  18. Hirsh J., Warkentin T.E., Shaughnessy S.G., Anand S.S., Halperin J.L., Raschke R., Granger C., Ohman E.M., Dalen J.E. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001; 119: 64S–94S.

  19. Zhang Y., Zhang M., Tan L., Pan N., Zhang L. The clinical use of Fondaparinux: A synthetic heparin pentasaccharide. Prog. Mol. Biol. Transl. Sci. 2019; 163: 41–53.

  20. Johnston A., Hsieh S.C., Carrier M., Kelly S.E., Bai Z., Skidmore B. A systematic review of clinical practice guidelines on the use of low molecular weight heparin and fondaparinux for the treatment and prevention of venous thromboembolism: implications for research and policy decision-making. PLoS One. 2018; 13: e0207410.

  21. Mousavi S., Moradi M., Khorshidahmad T., Motamedi M. Anti-Inflammatory Effects of Heparin and Its Derivatives: A Systematic Review. Adv. Pharmacol. Sci. 2015; 2015: 507151.

  22. Oduah E.I., Linhardt R.J., Sharfstein S.T. Heparin: Past, Present, and Future. Pharmaceuticals. 2016; 9.

  23. Thachil J. The versatile heparin in COVID-19. J. Thromb. Haemost. 2020 [Epub ahead of print].

  24. Iba T., Hashiguchi N., Nagaoka I., Tabe Y., Kadota K., Sato K. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med. Exp. 2015; 3: 36.

  25. Zhu C., Liang Y., Li X., Chen N., Ma X. Unfractionated heparin attenuates histone-mediated cytotoxicity in vitro and prevents intestinal microcirculatory dysfunction in histone-infused rats. J. Trauma Acute Care Surg. 2019; 87: 614–622.

  26. Ma J., Bai J. Protective effects of heparin on endothelial cells in sepsis. Int. J. Clin. Exp. Med. 2015; 8: 5547–5552.

  27. Shukla D., Spear P.G. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest. 2001; 108: 503–510.

  28. Ghezzi S., Cooper L., Rubio A., Pagani I., Capobianchi M.R., Ippolito G. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells. Antiviral Res. 2017; 140: 13–17.

  29. Vicenzi E., Canducci F., Pinna D., Mancini N., Carletti S., Lazzarin A. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg. Infect. Dis. 2004; 10: 413–418.

  30. Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur. Heart J. 2020; Mar 30 [Epub ahead of print].

  31. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020 [Epub ahead of print].

  32. Xie Y., Wang X., Yang P., Zhang S. COVID-19 Complicated by Acute Pulmonary Embolism. Radiology: Cardiothoracic Imaging. 2020; 2.

Поступила в редакцию 25.06.2020; принята 3.08.2020.

Авторский коллектив

Лука Костанцо – доктор медицины, больница Сан-Марко, отделение сердечно-сосудистых заболеваний поликлиники Витторио Эмануэле, Катанийский университет, г. Катания, Италия. Via Antonello da Messina 75 – 95021 Acicastello, Catania – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-3595-3461

Симона Антонина Грассо – доктор медицины, отделение анестезии и интенсивной терапии больницы Сан-Марко, поликлиника Родолико-Сан-Марко, г. Катания, Италия. Via Rosso di San Secondo 17 – 95128 Catania – Italy. Viale Del Ciclope 14 – 90149 Palermo – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0001-8930-9714

Франческо Паоло Палумбо – доктор медицины, хирургическое отделение клиники Вилла Фиорита, г. Прато, Италия. Viale Del Ciclope 14 – 90149 Palermo – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-3121-6579

Джорджио Ардита – доктор медицины, больница Сан-Марко, отделение сердечно-сосудистых заболеваний поликлиники Витторио Эмануэле, Катанийский университет, г. Катания, Италия. Via Pavia 7 – 95123 Catania – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-2535-3967

Луиджи Ди Пино – доктор медицины, профессор, кардиология и ангиология, отделение сердечно-сосудистых заболеваний поликлиники Витторио Эмануэле, Катанийский университет, г. Катания, Италия. Via Ungaretti 1/R, 95014 Giarre, Catania – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-4442-7199

Пьер Луиджи Антиньяни – доктор медицины, профессор, Сосудистый центр, Нуова Вилла Клаудиа, г. Рим, Италия. Via Germanico 211 – 00192 – Rome – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-3982-5275

Леонардо Алуиджи – доктор медицины, профессор, ангиология, отделение медицинской помощи Виллалба, г. Болонья, Италия. Via Giulietta Masina 5 40016 San Giorgio di Piano (BO) – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0001-8507-1585

Энрико Аросио – доктор медицины, профессор, Веронский университет, г. Верона, Италия. Via Porto San Pancrazio 111 – 37133 – Verona – Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-6702-9727

Джакомо Фаилла – доктор медицины, больница Сан-Марко, отделение сердечно-сосудистых заболеваний поликлиники Витторио Эмануэле, Катанийский университет, г. Катания, Италия. Via A Di Sangiuliano 50, Sant’Agata Li Battiati 95030 Catania, Italy; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-1327-3908

 

Образец цитирования

Luca Costanzo, Simona Antonina Grasso, Francesco Paolo Palumbo, Giorgio Ardita, Luigi Di Pino, Pier Luigi Antignani, Leonardo Aluigi, Enrico Arosio, Giacomo Failla. COVID-19 Pneumonia: the Point of View of Vascular Specialist. Ульяновский медико-биологический журнал. 2020; 3: 21–27. DOI: 10.34014/2227-1848-2020-3-21-27.