Download article

DOI 10.34014/2227-1848-2023-2-132-144

PHYSIOLOGICAL RISK FACTORS CAUSED BY LOW PHYSICAL ACTIVITY

N.V. Sibiryakova

Astrakhan State Medical University, Ministry of Health of the Russian Federation, Astrakhan, Russia

 

The biological need for movement is inherent in all living organisms, including a human being. It determines functionality and performance of the organism. However, a change in the lifestyle of modern people has led to a limitation of their physical activity. In this regard, the younger generation is of particular concern. The May 2017 WHO report, Global Accelerated Action for the Health of Adolescent (AA-HA!): Guidance to Support Country Implementation, noted that “more than 3000 adolescents die every day from largely preventable causes and that many key risk factors for future adult disease start or are consolidated in adolescence.” The low level of physical activity, observed throughout the world, is a risk factor for the development of many functional disorders and diseases.

The physiological mechanisms of physical activity are being thoroughly studied. There are many publications devoted to the impact of physical activity on physiological processes. However, these studies are fragmented due to the constantly changing factors of human life (quarantine measures, distance learning, remote work).

The paper presents a systematic review of publications devoted to the influence of physical activity on the physiological processes of the body. The authors used articles from databases Medline, Scopus, Pubmed, Cochrane, Embase, Web of Science, Google Scholar, eLIBRARY, and Cyberleninka for the review. Such terms as physical activity, low level of physical activity, sedentary lifestyle, hypokinesia, hypodynamia were used for the keyword search.

Key words: hypokinesia, hypodynamia, physical activity, sedentary lifestyle.

 

Conflict of interest. The author declares no conflict of interest.

 

References

  1. Global Accelerated Action for the Health of Adolescents (AA-HA!): Guidance to Support Country Implementation. WHO / UN /UNICEF / UNAIDS / UNFPA / World BankWorld Health Organization. Geneva; 2017. 176.

  2. Saunders T.J., Gray C.E., Poitras V.J., Chaput J.P., Janssen I., Katzmarzyk P.T., Olds T., Connor Gorber S.,Kho M.E., Sampson M., Tremblay M.S., Carson V. Combinations of physical activity, sedentary behaviour and sleep: relationships with health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016; 41 (6, Suppl 3): 283–293. DOI: 10.1139/apnm-2015-0626.

  3. Boudet G., Chausse P., Thivel D., Rousset S., Mermillod M., Baker J.S., Parreira L.M., Esquirol Y., Duclos M., Dutheil F. How to Measure Sedentary Behavior at Work? Front Public Health. 2019; 7: 167. DOI: 10.3389/fpubh.2019.00167.

  4. Yamanova G.A., Antonova A.A. Znachimost' faktorov obrazovatel'nogo prostranstva v formirovanii zdorov'ya detey [The importance of educational space factors in the formation of children's health]. Profilakticheskaya meditsina. 2022; 25 (2): 113–118. DOI: 0.17116/profmed202225021113 (in Russian).

  5. Shabunova A.A., Morev M.V., Kondakova N.A. Zdorov'e detey: itogi pyatnadtsatiletnego monitoringa [Children's health: Results of 15-year monitoring]. Vologda: ISERT RAN; 2012. 262 (in Russian).

  6. Tomarova L.S., Vlasenko S.Yu. Zdorov'e molodezhi v sovremennom mire [Youth health in the modern world]. OlymPlus (Gumanitarnaya versiya): mezhdunarodnyy nauchno-prakticheskiy zhurnal. 2022; 1 (14): 76–78 (in Russian).

  7. Capodaglio E.M. Attività fisica, strumento di prevenzione e gestione delle malattie croniche. G Ital Med Lav Ergon. 2018; 40 (2): 106–119.

  8. Grishan M.A. Fiziologicheskie posledstviya gipodinamii dlya organizma cheloveka [Physiological consequences of physical inactivity for the human body]. Zdorov'e i obrazovanie v XXI veke. 2018; 20 (12): 70–73 (in Russian).

  9. Kuznetsov O.Yu., Petrova G.S. Fiziologicheskie osnovy stimulyatsii aktivnosti intellektual'noy deyatel'nosti studentov sredstvami fizicheskogo vospitaniya [Physiological bases of stimulating students’ intellectual activity by means of physical education]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Gumanitarnye nauki. 2013; 1: 357–362 (in Russian).

  10. Lobanov S.A., Emeleva T.F., Danilov A.V., Danilov E.V., Asaeva S.K., Arslanova G.F. Gipodinamiya kak stressovyy faktor [Hypodynamia as a stress factor]. Meditsinskiy vestnik Bashkortostana. 2006; 1 (1): 72–74 (in Russian).

  11. Solodkov A.S., Sologub E.B. Fiziologiya cheloveka. Obshchaya. Sportivnaya. Vozrastnaya: uchebnik [Human physiology. General. Sports. Age: Textbook]. 2-e izd., ispr. i dop. Moscow: Terra-Sport, Olimpiya Press; 2005. 528. ISBN 5-94299-037-9 (in Russian).

  12. Sumińska S. Wpływ aktywności fizycznej na sprawność poznawczą. Medycyna pracy. 31; 72 (4): 437–450. DOI: 10.13075/mp.5893.01103.

  13. Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001; 21 (17): 6706–6717.

  14. Scharfman H., Goodman J., Macleod A., Phani S., Antonelli C., Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Experimental Neurology. 2005; 192: 2: 348–356.

  15. Ma C.L., Ma X.T., Wang J.J., Liu H., Chen Y.F., Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav. Brain Res. 2017; 317: 332–339. DOI: 10.1016/j.bbr.2016.09.067.

  16. Schmidt-Kassow M., Zink N., Mock J., Thiel C., Vogt L., Abel C., Kaiser J. Treadmill walking during vocabulary encoding improves verbal long-term memory. Behav. Brain Funct. 2014; 10: 24. DOI: 10.1186/1744-9081-10-24.

  17. Suwabe K., Hyodo K., Byun K., Ochi G., Yassa M.A., Soya H. Acute moderate exercise improves mnemonic discrimination in young adults. Hippocampus. 2017; 27: 229–234. DOI: 10.1002/hipo.22695.

  18. Rodriguez-Ayllon M., Cadenas-Sánchez C., Estévez-López F., Muñoz N.E., Mora-Gonzalez J., Migueles J.H., Molina-García P., Henriksson H., Mena-Molina A., Martínez-Vizcaíno V. Role of Physical Activity and Sedentary Behavior in the Mental Health of Preschoolers, Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2019; 49: 1383–1410. DOI: 10.1007/s40279-019-01099-5.

  19. Lezi E., Burns J.M., Swerdlow R.H. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging. 2014; 35: 2574–2583. DOI: 10.1016/j.neurobiolaging.2014.05.033.

  20. Di Liegro C.M., Schiera G., Proia P., Di Liegro I. Physical Activity and Brain Health. Genes (Basel). 2019; 10 (9): 720. DOI: 10.3390/genes10090720. PMID: 31533339; PMCID: PMC6770965.

  21. Spilker C., Nullmeier S., Grochowska K.M., Schumacher A., Butnaru I., Macharadze T., Gomes G.M., Yuanxiang P., Bayraktar G., Rodenstein C. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genet. 2016; 12: e1005907. DOI: 10.1371/journal.pgen.1005907.

  22. Moon H.Y., Becke A., Berron D., Becker B., Sah N., Benoni G., Janke E., Lubejko S.T., Greig N.H., Mattison J.A. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab. 2016; 24: 332–340. DOI: 10.1016/j.cmet.2016.05.025.

  23. Hötting K., Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013; 37: 2243–2257. DOI: 10.1016/j.neubiorev.2013.04.005.

  24. Al'fonsov V.V., Al'fonsova E.V. Vliyanie gipodinamii na svertyvanie krovi, fibrinoliz i sosudisto-trombotsitarnyy gemostaz [Influence of physical inactivity on blood coagulation, fibrinolysis and vascular-platelet hemostasis]. Uchenye zapiski Zabaykal'skogo gosudarstvennogo gumanitarno-pedagogicheskogo universiteta im. N.G. Chernyshevskogo. 2010; 1 (30): 13–19 (in Russian).

  25. Aune D., Schlesinger S., Leitzmann M.F., Tonstad S., Norat T., Riboli E., Vatten L.J. Physical activity and the risk of heart failure: a systematic review and dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2021; 36 (4): 367–381. DOI: 10.1007/s10654-020-00693-6.

  26. Mal'tseva N.G., Kuznetsova T.G. Vliyanie gipokinezii na strukturu miokarda [Influence of hypokinesia on the myocardium structure]. Problemy zdorov'ya i ekologii. 2008; 2 (16): 113–118 (in Russian).

  27. Booth F.W., Roberts C.K., Laye M.J. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012; 2 (2): 1143–1211. DOI: 10.1002/cphy.c110025.

  28. Ricci N.A., Cunha A.I.L. Physical Exercise for Frailty and Cardiovascular Diseases. Adv Exp Med Biol. 2020; 1216: 115–129. DOI: 10.1007/978-3-030-33330-0_12.

  29. Chinkin A.S. Mekhanizmy samoregulyatsii sokratitel'noy funktsii miokarda pri gipokinezii i myshechnoy trenirovke [Mechanisms of self-regulation of myocardial contractile function during hypokinesia and muscle training]. Uspekhi fiziologicheskikh nauk. 2012; 43 (2): 72–82. (in Russian).

  30. Sigaleva E.E., Matsnev E.I., Voronkov Yu.I., Buylov S.P., Zakharova L.N., Kuz'min M.P., Kriushev E.S., Degterenkova N.V., Smirnov O.A., Stepanova G.P. Retrospektivnyy analiz kliniko-fiziologicheskoy adaptatsii organizma cheloveka k usloviyam 370-sutochnoy antiortostaticheskoy gipokinezii [Retrospective analysis of clinical and physiological adaptation of human organism to 370-day bed rest]. Aviakosmicheskaya i ekologicheskaya meditsina. 2019; 53 (4): 19–27. DOI: 10.21687/0233-528X-2019-53-4-19-27 (in Russian).

  31. Dimitri P., Joshi K., Jones N. Moving Medicine for Children Working Group. Moving more: physical activity and its positive effects on long term conditions in children and young people. Arch Dis Child. 2020; 105 (11): 1035–1040. DOI: 10.1136/archdischild-2019-318017.

  32. Bakker E.A., Sui X., Brellenthin A.G., Lee D.C. Physical activity and fitness for the prevention of hypertension. Curr Opin Cardiol. 2018; 33 (4): 394–401. DOI: 10.1097/HCO.0000000000000526.

  33. Boyle L.J., Credeur D.P., Jenkins N.T., Padilla J., Leidy H.J., Thyfault J.P., Fadel P.J. Impact of reduced daily physical activity on conduit artery flow-mediated dilation and circulating endothelial microparticles. Journal of Applied Physiology. 2013; 115: 1519–1525.

  34. Oral O. Nitric oxide and its role in exercise physiology. J Sports Med Phys Fitness. 2021; 61 (9): 1208–1211. DOI: 10.23736/S0022-4707.21.11640-8.

  35. Gifford J.R., Richardson R.S. CORP: Ultrasound assessment of vascular function with the passive leg movement technique. J Appl Physiol. 2017; 123 (6): 1708–1720. DOI: 10.1152/japplphysiol.00557.2017.

  36. Zuccarelli L., Baldassarre G., Magnesa B., Degano C., Comelli M., Gasparini M., Manferdelli G., Marzorati M., Mavelli I., Pilotto A., Porcelli S., Rasica L., Šimunič B., Pišot R., Narici M., Grassi B. Peripheral impairments of oxidative metabolism after a 10-day bed rest are upstream of mitochondrial respiration. J Physiol. 2021; 599 (21): 4813–4829. DOI: 10.1113/JP281800.

  37. Porcelli S., Rasica L., Zuccarelli L., Magnesa B., Degano C., Comelli M., Grassi B. Effects of 10-day bed-rest on nitric oxide metabolites and microvascular function assessed by near-infared spectroscopy. 67th annual meeting, American College of Sports Medicine. 2020, may 26–30. CA: San Francisco; 2020: 781.

  38. Tanaka H. Various Indices of Arterial Stiffness: Are They Closely Related or Distinctly Different? Pulse (Basel). 2018; 5 (1-4): 1–6. DOI: 10.1159/000461594.

  39. Bakker E.A., Sui X., Brellenthin A.G., Lee D.C. Physical activity and fitness for the prevention of hypertension. Curr Opin Cardiol. 2018; 33 (4): 394–401. DOI: 10.1097/HCO.0000000000000526.

  40. Martín-Martín J., Roldán-Jiménez C., De-Torres I., Muro-Culebras A., Escriche-Escuder A., Gonzalez-Sanchez M., Ruiz-Muñoz M., Mayoral-Cleries F., Biró A., Tang W., Nikolova B., Salvatore A., Cuesta-Vargas A.I. Behavior change techniques and the effects associated with digital behavior change interventions in sedentary behavior in the clinical population: a systematic review. Front Digit Health. 2021; 3: 620383. DOI: 10.3389/fdgth.2021.620383.

  41. German C., Makarem N., Fanning J., Redline S., Elfassy T., McClain A., Abdalla M., Aggarwal B., Allen N., Carnethon M. Sleep, Sedentary behavior, physical activity, and cardiovascular health: MESA. Med Sci Sports Exerc. 2021; 53 (4): 724–731. DOI: 10.1249/MSS.0000000000002534.

  42. Gorst V.R., Gorst N.A., Polukova M.V., Bagamaeva A.B., Shebeko L.V., Lobanova M.I. Rassoglasovanie ritmov serdechno-sosudistoy i dykhatel'noy sistem pri maksimal'nykh fizicheskikh nagruzkakh [Mismatch in the rhythms of cardiovascular and respiratory systems at maximum physical exertion]. Astrakhanskiy meditsinskiy zhurnal. 2011; 6 (2): 242–244 (in Russian).

  43. Yamanova G.A. Tip regulyatsii serdechnogo ritma kak kriteriy adaptatsii k usloviyam obucheniya [Type of heart rate regulation as a criterion for adaptation to learning conditions]. Chelovek. Sport. Meditsina. 2021; 21 (1): 62–70. DOI: 10.14529/hsm210108 (in Russian).

  44. Elikov A.V., Tsapok P.I. Vliyanie vitaminov-antioksidantov S i E na sostoyanie lipidnogo obmena pri gipodinamii [Influence of antioxidant vitamins C and E on lipid metabolism in hypodynamia]. Permskiy meditsinskiy zhurnal. 2010; 27 (3): 98–103 (in Russian).

  45. Elikov A.V. Metabolicheskaya adaptatsiya k dvigatel'noy aktivnosti razlichnoy intensivnosti i gipodinamii [Metabolic adaptation to motor activity of varying intensity and physical inactivity]: avtoref. dis. … d-ra med. nauk. Chelyabinsk; 2015. 33 (in Russian).

  46. Mal' G.S., Yastrebov V.S., Mironova D.Yu. Fiziologicheskaya reaktsiya agregatsii eritrotsitov pri prekrashchenii dlitel'noy gipodinamii [Physiological reaction of erythrocyte aggregation upon cessation of prolonged physical inactivity]. Tendentsii razvitiya nauki i obrazovaniya. 2019; 47 (5): 57–60. DOI: 10.18411/lj-02-2019-103 (in Russian).

  47. Zheng C., Zhang X., Sheridan S., Ho R.S., Sit C.H., Huang Y., Wong S.H. Effect of sedentary behavior interventions on vascular function in adults: A systematic review and meta-analysis. Scand J Med Sci Sports. 2021; 31 (7): 1395–1410. DOI: 10.1111/sms.13947.

  48. Archer E., Lavie C.J., Hill J.O. The contributions of «diet», «genes», and physical activity to the etiology of obesity: Contrary evidence and consilience. Progress in Cardiovascular Diseases. 2018; 61 (2): 89–102.

  49. Larsen S., Lundby A.M., Dandanell S., Oberholzer L., Keiser S., Andersen A.B., Haider T., Lundby C. Four days of bed rest increases intrinsic mitochondrial respiratory capacity in young healthy males. Physiol Rep. 2018; 6 (18): e13793. DOI: 10.14814/phy2.13793.

  50. Panahi S., Tremblay A. Sedentariness and Health: Is sedentary behavior more than just physical inactivity? Front Public Health. 2018; 6: 258. DOI: 10.3389/fpubh.2018.00258.

  51. Raichlen D.A., Pontzer H., Zderic T.W., Harris J.A., Mabulla A.Z.P., Hamilton M.T., Wood B.M. Sitting, squatting, and the evolutionary biology of human inactivity. Proc Natl Acad Sci USA. 2020; 117 (13): 7115–7121. DOI: 10.1073/pnas.1911868117.

  52. Dirks M.L., Miotto P.M., Goossens G.H., Senden J.M., Petrick H.L., van Kranenburg J., van Loon L.J.C., Holloway G.P. Short-term bed rest-induced insulin resistance cannot be explained by increased mitochondrial H2O2 emission. J Physiol. 2020; 598 (1): 123–137. DOI: 10.1113/JP278920.

  53. Faienza M.F., Lassandro G., Chiarito M., Valente F., Ciaccia L., Giordano P. How physical activity across the lifespan can reduce the impact of bone ageing: a literature review. Int J Environ Res Public Health. 2020; 17 (6): 1862. DOI: 10.3390/ijerph17061862.

  54. Deogenov V.A., Luzhkov A.G., Kakuris K.K., Federenko Y.F. Muscle calcium metabolic effects of hypokinesia in physically healthy subjects. Biol Trace Elem Res. 2010; 138 (1-3): 116–124. DOI: 10.1007/s12011-010-8626-0.

  55. Aguado E., Mabilleau G., Goyenvalle E., Chappard D. Hypodynamia Alters Bone Quality and Trabecular Microarchitecture. Calcif Tissue Int. 2017; 100 (4): 332–340. DOI: 10.1007/s00223-017-0235-x.

  56. Aguado E., Pascaretti-Grizon F., Goyenvalle E., Audran M., Chappard D. Bone mass and bone quality are altered by hypoactivity in the chicken. PLoS One. 2015; 10 (1): e0116763. DOI: 10.1371/journal.pone.0116763.

  57. Narici M., Monti E., Franchi M., Sarto F., Reggiani C., Toniolo L., Pisot R. Biomarkers of muscle atrophy and of neuromuscular maladaptation during 10-day bed rest. European Journal of Translational Myology. 2020; 30 (1): 23–24.

  58. Kilroe S.P., Fulford J., Jackman S.R., van Loon L.J.C., Wall B.T. Temporal Muscle-specific Disuse Atrophy during One Week of Leg Immobilization. Medicine and science in sports and exercise. 2020; 52 (4): 944–954.

  59. Narici M., Vito G., Franchi M., Paoli A., Moro T., Marcolin G., Grassi B., Baldassarre G., Zuccarelli L., Biolo G., di Girolamo F.G., Fiotti N., Dela F., Greenhaff P., Maganaris C. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci. 2021; 21 (4): 614–635. DOI: 10.1080/17461391.2020.1761076.

  60. Kramer A. An overview of the beneficial effects of exercise on health and performance. Adv Exp Med Biol. 2020; 1228: 3–22. DOI: 10.1007/978-981-15-1792-1_1.

Received January 9, 2023; accepted April 8, 2023.

 

Information about the author

Sibiryakova Natal'ya Vladimirovna, Candidate of Sciences (Medicine), Associate Professor, Chair of Normal Physiology, Astrakhan State Medical University, Ministry of Health of the Russian Federation. 414000, Russia, Astrakhan, Bakinskaya St., 121; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: http://orcid.org/0000-0002-8344-6408

 

For citation

Sibiryakova N.V. Fiziologicheskie aspekty riskov, obuslovlennykh nizkoy fizicheskoy aktivnost'yu [Physiological risk factors caused by low physical activity]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2023; 2: 132–144. DOI: 10.34014/2227-1848-2023-2-132-144 (in Russian).

 

Скачать статью

УДК 616-009.2:612.76

DOI 10.34014/2227-1848-2023-2-132-144

ФИЗИОЛОГИЧЕСКИЕ АСПЕКТЫ РИСКОВ, ОБУСЛОВЛЕННЫХ НИЗКОЙ ФИЗИЧЕСКОЙ АКТИВНОСТЬЮ

Н.В. Сибирякова

ФГБОУ ВО «Астраханский государственный медицинский университет» Минздрава России, г. Астрахань, Россия

 

Биологическая потребность в движении, которая присуща всем живым организмам и в т.ч. человеку, определяет его функциональные возможности и работоспособность. Однако изменение образа жизни современного человека привело к ограничению его двигательной активности. Особую обеспокоенность в этом плане вызывает молодое, подрастающее поколение. В опубликованном ВОЗ в мае 2017 г. докладе «Глобальные ускоренные действия в интересах здоровья подростков (AA-HA!): руководство для содействия осуществлению в странах» отмечено, что более 3000 подростков каждый год умирает от предотвратимых причин и многие ключевые факторы риска заболеваний во взрослом возрасте начинают действовать или закрепляются в подростковом возрасте. Низкий уровень физической активности населения, наблюдаемый по всему миру, является фактором риска развития многих функциональных отклонений и заболеваний.

Физиологические механизмы физической активности пристально изучаются. Имеется большое количество публикаций, посвященных изучению воздействия физических нагрузок на состояние физиологических процессов. Однако эти исследования носят разрозненный характер в связи с постоянно меняющимися факторами жизнедеятельности человека в последние годы (карантинные мероприятия, дистанционное обучение, удаленная работа).

В статье проведен систематический обзор публикаций, посвященных изучению влияния уровня физической активности на физиологические процессы организма. Использованы базы данных Medline, Scopus, Pubmed, Cochrane, Embase, Web of Science, Google Scholar, eLIBRARY, Cyberleninka. Поиск проведен по ключевым словам «физическая активность», «низкий уровень физической активности», «сидячий образ жизни», «гипокинезия», «гиподинамия».

Ключевые слова: гипокинезия, гиподинамия, физическая активность, сидячий образ жизни.

 

Конфликт интересов. Автор заявляет об отсутствии конфликта интересов.

Литература

  1. Global Accelerated Action for the Health of Adolescents (AA-HA!): Guidance to Support Country Implementation. WHO / UN /UNICEF / UNAIDS / UNFPA / World BankWorld Health Organization. Geneva; 2017. 176.

  2. Saunders T.J., Gray C.E., Poitras V.J., Chaput J.P., Janssen I., Katzmarzyk P.T., Olds T., Connor Gorber S., Kho M.E., Sampson M., Tremblay M.S., Carson V. Combinations of physical activity, sedentary behaviour and sleep: relationships with health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016; 41 (6, Suppl 3): 283–293. DOI: 10.1139/apnm-2015-0626.

  3. Boudet G., Chausse P., Thivel D., Rousset S., Mermillod M., Baker J.S., Parreira L.M., Esquirol Y., Duclos M., Dutheil F. How to Measure Sedentary Behavior at Work? Front Public Health. 2019; 7: 167. DOI: 10.3389/fpubh.2019.00167.

  4. Яманова Г.А., Антонова А.А. Значимость факторов образовательного пространства в формировании здоровья детей. Профилактическая медицина. 2022; 25 (2): 113–118. DOI: 0.17116/profmed202225021113.

  5. Шабунова А.А., Морев М.В., Кондакова Н.А. Здоровье детей: итоги пятнадцатилетнего мониторинга. Вологда: ИСЭРТ РАН; 2012. 262.

  6. Томарова Л.С., Власенко С.Ю. Здоровье молодежи в современном мире. OlymPlus (Гуманитарная версия): международный научно-практический журнал. 2022; 1 (14): 76–78.

  7. Capodaglio E.M. Attività fisica, strumento di prevenzione e gestione delle malattie croniche. G Ital Med Lav Ergon. 2018; 40 (2): 106–119.

  8. Гришан М.А. Физиологические последствия гиподинамии для организма человека. Здоровье и образование в XXI веке. 2018; 20 (12): 70–73.

  9. Кузнецов О.Ю., Петрова Г.С. Физиологические основы стимуляции активности интеллектуальной деятельности студентов средствами физического воспитания. Известия Тульского государственного университета. Гуманитарные науки. 2013; 1: 357–362.

  10. Лобанов С.А., Емелева Т.Ф., Данилов А.В., Данилов Е.В., Асаева С.К., Арсланова Г.Ф. Гиподинамия как стрессовый фактор. Медицинский вестник Башкортостана. 2006; 1 (1): 72–74.

  11. Солодков А.С., Сологуб Е.Б. Физиология человека. Общая. Спортивная. Возрастная: учебник. 2-е изд., испр. и доп. Москва: Терра-Спорт, Олимпия Пресс; 2005. 528. ISBN 5-94299-037-9.

  12. Sumińska S. Wpływ aktywności fizycznej na sprawność poznawczą. Medycyna pracy. 31; 72 (4): 437–450. DOI: 10.13075/mp.5893.01103.

  13. Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001; 21 (17): 6706–6717.

  14. Scharfman H., Goodman J., Macleod A., Phani S., Antonelli C., Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Experimental Neurology. 2005; 192: 2: 348–356.

  15. Ma C.L., Ma X.T., Wang J.J., Liu H., Chen Y.F., Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav. Brain Res. 2017; 317: 332–339. DOI: 10.1016/j.bbr.2016. 09.067.

  16. Schmidt-Kassow M., Zink N., Mock J., Thiel C., Vogt L., Abel C., Kaiser J. Treadmill walking during vocabulary encoding improves verbal long-term memory. Behav. Brain Funct. 2014; 10: 24. DOI: 10.1186/1744-9081-10-24.

  17. Suwabe K., Hyodo K., Byun K., Ochi G., Yassa M.A., Soya H. Acute moderate exercise improves mnemonic discrimination in young adults. Hippocampus. 2017; 27: 229–234. DOI: 10.1002/hipo.22695.

  18. Rodriguez-Ayllon M., Cadenas-Sánchez C., Estévez-López F., Muñoz N.E., Mora-Gonzalez J., Migueles J.H., Molina-García P., Henriksson H., Mena-Molina A., Martínez-Vizcaíno V. Role of Physical Activity and Sedentary Behavior in the Mental Health of Preschoolers, Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2019; 49: 1383–1410. DOI: 10.1007/s40279-019-01099-5.

  19. Lezi E., Burns J.M., Swerdlow R.H. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging. 2014; 35: 2574–2583. DOI: 10.1016/j.neurobiolaging.2014.05.033.

  20. Di Liegro C.M., Schiera G., Proia P., Di Liegro I. Physical Activity and Brain Health. Genes (Basel). 2019; 10 (9): 720. DOI: 10.3390/genes10090720. PMID: 31533339; PMCID: PMC6770965.

  21. Spilker C., Nullmeier S., Grochowska K.M., Schumacher A., Butnaru I., Macharadze T., Gomes G.M., Yuanxiang P., Bayraktar G., Rodenstein C. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genet. 2016; 12: e1005907. DOI: 10.1371/journal.pgen.1005907.

  22. Moon H.Y., Becke A., Berron D., Becker B., Sah N., Benoni G., Janke E., Lubejko S.T., Greig N.H., Mattison J.A. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab. 2016; 24: 332–340. DOI: 10.1016/j.cmet.2016.05.025.

  23. Hötting K., Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013; 37: 2243–2257. DOI: 10.1016/j.neubiorev.2013.04.005.

  24. Альфонсов В.В., Альфонсова Е.В. Влияние гиподинамии на свертывание крови, фибринолиз и сосудисто-тромбоцитарный гемостаз. Ученые записки Забайкальского государственного гуманитарно-педагогического университета им. Н.Г. Чернышевского. 2010; 1 (30): 13–19.

  25. Aune D., Schlesinger S., Leitzmann M.F., Tonstad S., Norat T., Riboli E., Vatten L.J. Physical activity and the risk of heart failure: a systematic review and dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2021; 36 (4): 367–381. DOI: 10.1007/s10654-020-00693-6.

  26. Мальцева Н.Г., Кузнецова Т.Г. Влияние гипокинезии на структуру миокарда. Проблемы здоровья и экологии. 2008; 2 (16): 113–118.

  27. Booth F.W., Roberts C.K., Laye M.J. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012; 2 (2): 1143–1211. DOI: 10.1002/cphy.c110025.

  28. Ricci N.A., Cunha A.I.L. Physical Exercise for Frailty and Cardiovascular Diseases. Adv Exp Med Biol. 2020; 1216: 115–129. DOI: 10.1007/978-3-030-33330-0_12.

  29. Чинкин А.С. Механизмы саморегуляции сократительной функции миокарда при гипокинезии и мышечной тренировке. Успехи физиологических наук. 2012; 43 (2): 72–82.

  30. Сигалева Е.Э., Мацнев Э.И., Воронков Ю.И., Буйлов С.П., Захарова Л.Н., Кузьмин М.П., Криушев Е.С., Дегтеренкова Н.В., Смирнов О.А., Степанова Г.П. Ретроспективный анализ клинико-физиологической адаптации организма человека к условиям 370-суточной антиортостатической гипокинезии. Авиакосмическая и экологическая медицина. 2019; 53 (4): 19–27. DOI: 10.21687/0233-528X-2019-53-4-19-27.

  31. Dimitri P., Joshi K., Jones N. Moving Medicine for Children Working Group. Moving more: physical activity and its positive effects on long term conditions in children and young people. Arch Dis Child. 2020; 105 (11): 1035–1040. DOI: 10.1136/archdischild-2019-318017.

  32. Bakker E.A., Sui X., Brellenthin A.G., Lee D.C. Physical activity and fitness for the prevention of hypertension. Curr Opin Cardiol. 2018; 33 (4): 394–401. DOI: 10.1097/HCO.0000000000000526.

  33. Boyle L.J., Credeur D.P., Jenkins N.T., Padilla J., Leidy H.J., Thyfault J.P., Fadel P.J. Impact of reduced daily physical activity on conduit artery flow-mediated dilation and circulating endothelial microparticles. Journal of Applied Physiology. 2013; 115: 1519–1525.

  34. Oral O. Nitric oxide and its role in exercise physiology. J Sports Med Phys Fitness. 2021; 61 (9): 1208–1211. DOI: 10.23736/S0022-4707.21.11640-8.

  35. Gifford J.R., Richardson R.S. CORP: Ultrasound assessment of vascular function with the passive leg movement technique. J Appl Physiol. 2017; 123 (6): 1708–1720. DOI: 10.1152/japplphysiol.00557.2017.

  36. Zuccarelli L., Baldassarre G., Magnesa B., Degano C., Comelli M., Gasparini M., Manferdelli G., Marzorati M., Mavelli I., Pilotto A., Porcelli S., Rasica L., Šimunič B., Pišot R., Narici M., Grassi B. Peripheral impairments of oxidative metabolism after a 10-day bed rest are upstream of mitochondrial respiration. J Physiol. 2021; 599 (21): 4813–4829. DOI: 10.1113/JP281800.

  37. Porcelli S., Rasica L., Zuccarelli L., Magnesa B., Degano C., Comelli M., Grassi B. Effects of 10-day bed-rest on nitric oxide metabolites and microvascular function assessed by near-infared spectroscopy. 67th annual meeting, American College of Sports Medicine. 2020, may 26–30. CA: San Francisco; 2020: 781.

  38. Tanaka H. Various Indices of Arterial Stiffness: Are They Closely Related or Distinctly Different? Pulse (Basel). 2018; 5 (1-4): 1–6. DOI: 10.1159/000461594.

  39. Bakker E.A., Sui X., Brellenthin A.G., Lee D.C. Physical activity and fitness for the prevention of hypertension. Curr Opin Cardiol. 2018; 33 (4): 394–401. DOI: 10.1097/HCO.0000000000000526.

  40. Martín-Martín J., Roldán-Jiménez C., De-Torres I., Muro-Culebras A., Escriche-Escuder A., Gonzalez-Sanchez M., Ruiz-Muñoz M., Mayoral-Cleries F., Biró A., Tang W., Nikolova B., Salvatore A., Cuesta-Vargas A.I. Behavior change techniques and the effects associated with digital behavior change interventions in sedentary behavior in the clinical population: a systematic review. Front Digit Health. 2021; 3: 620383. DOI: 10.3389/fdgth.2021.620383.

  41. German C., Makarem N., Fanning J., Redline S., Elfassy T., McClain A., Abdalla M., Aggarwal B., Allen N., Carnethon M. Sleep, Sedentary behavior, physical activity, and cardiovascular health: MESA. Med Sci Sports Exerc. 2021; 53 (4): 724–731. DOI: 10.1249/MSS.0000000000002534.

  42. Горст В.Р., Горст Н.А., Полукова М.В., Багамаева А.Б., Шебеко Л.В., Лобанова М.И. Рассогласование ритмов сердечно-сосудистой и дыхательной систем при максимальных физических нагрузках. Астраханский медицинский журнал. 2011; 6 (2): 242–244.

  43. Яманова Г.А. Тип регуляции сердечного ритма как критерий адаптации к условиям обучения. Человек. Спорт. Медицина. 2021; 21 (1): 62–70. DOI: 10.14529/hsm210108.

  44. Еликов А.В., Цапок П.И. Влияние витаминов-антиоксидантов С и Е на состояние липидного обмена при гиподинамии. Пермский медицинский журнал. 2010; 27 (3): 98–103.

  45. Еликов А.В. Метаболическая адаптация к двигательной активности различной интенсивности и гиподинамии: автореф. дис. … д-ра мед. наук. Челябинск; 2015. 33.

  46. Маль Г.С., Ястребов В.С., Миронова Д.Ю. Физиологическая реакция агрегации эритроцитов при прекращении длительной гиподинамии. Тенденции развития науки и образования. 2019; 47 (5): 57–60. DOI: 10.18411/lj-02-2019-103.

  47. Zheng C., Zhang X., Sheridan S., Ho R.S., Sit C.H., Huang Y., Wong S.H. Effect of sedentary behavior interventions on vascular function in adults: A systematic review and meta-analysis. Scand J Med Sci Sports. 2021; 31 (7): 1395–1410. DOI: 10.1111/sms.13947.

  48. Archer E., Lavie C.J., Hill J.O. The contributions of «diet», «genes», and physical activity to the etiology of obesity: Contrary evidence and consilience. Progress in Cardiovascular Diseases. 2018; 61 (2): 89–102.

  49. Larsen S., Lundby A.M., Dandanell S., Oberholzer L., Keiser S., Andersen A.B., Haider T., Lundby C. Four days of bed rest increases intrinsic mitochondrial respiratory capacity in young healthy males. Physiol Rep. 2018; 6 (18): e13793. DOI: 10.14814/phy2.13793.

  50. Panahi S., Tremblay A. Sedentariness and Health: Is sedentary behavior more than just physical inactivity? Front Public Health. 2018; 6: 258. DOI: 10.3389/fpubh.2018.00258.

  51. Raichlen D.A., Pontzer H., Zderic T.W., Harris J.A., Mabulla A.Z.P., Hamilton M.T., Wood B.M. Sitting, squatting, and the evolutionary biology of human inactivity. Proc Natl Acad Sci USA. 2020; 117 (13): 7115–7121. DOI: 10.1073/pnas.1911868117.

  52. Dirks M.L., Miotto P.M., Goossens G.H., Senden J.M., Petrick H.L., van Kranenburg J., van Loon L.J.C., Holloway G.P. Short-term bed rest-induced insulin resistance cannot be explained by increased mitochondrial H2O2 emission. J Physiol. 2020; 598 (1): 123–137. DOI: 10.1113/JP278920.

  53. Faienza M.F., Lassandro G., Chiarito M., Valente F., Ciaccia L., Giordano P. How physical activity across the lifespan can reduce the impact of bone ageing: a literature review. Int J Environ Res Public Health. 2020; 17 (6): 1862. DOI: 10.3390/ijerph17061862.

  54. Deogenov V.A., Luzhkov A.G., Kakuris K.K., Federenko Y.F. Muscle calcium metabolic effects of hypokinesia in physically healthy subjects. Biol Trace Elem Res. 2010; 138 (1-3): 116–124. DOI: 10.1007/s12011-010-8626-0.

  55. Aguado E., Mabilleau G., Goyenvalle E., Chappard D. Hypodynamia Alters Bone Quality and Trabecular Microarchitecture. Calcif Tissue Int. 2017; 100 (4): 332–340. DOI: 10.1007/s00223-017-0235-x.

  56. Aguado E., Pascaretti-Grizon F., Goyenvalle E., Audran M., Chappard D. Bone mass and bone quality are altered by hypoactivity in the chicken. PLoS One. 2015; 10 (1): e0116763. DOI: 10.1371/journal.pone.0116763.

  57. Narici M., Monti E., Franchi M., Sarto F., Reggiani C., Toniolo L., Pisot R. Biomarkers of muscle atrophy and of neuromuscular maladaptation during 10-day bed rest. European Journal of Translational Myology. 2020; 30 (1): 23–24.

  58. Kilroe S.P., Fulford J., Jackman S.R., van Loon L.J.C., Wall B.T. Temporal Muscle-specific Disuse Atrophy during One Week of Leg Immobilization. Medicine and science in sports and exercise. 2020; 52 (4): 944–954.

  59. Narici M., Vito G., Franchi M., Paoli A., Moro T., Marcolin G., Grassi B., Baldassarre G., Zuccarelli L., Biolo G., di Girolamo F.G., Fiotti N., Dela F., Greenhaff P., Maganaris C. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci. 2021; 21 (4): 614–635. DOI: 10.1080/17461391.2020.1761076.

  60. Kramer A. An overview of the beneficial effects of exercise on health and performance. Adv Exp Med Biol. 2020; 1228: 3–22. DOI: 10.1007/978-981-15-1792-1_1.

Поступила в редакцию 09.01.2023; принята 08.04.2023.

 

Автор

Сибирякова Наталья Владимировна – кандидат медицинских наук, доцент кафедры нормальной физиологии, ФГБОУ ВО «Астраханский государственный медицинский университет» Минздрава России. 414000, Россия, г. Астрахань, ул. Бакинская, 121; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: http://orcid.org/0000-0002-8344-6408

 

Образец цитирования

Сибирякова Н.В. Физиологические аспекты рисков, обусловленных низкой физической активностью. Ульяновский медико-биологический журнал. 2023; 2: 132–144. DOI: 10.34014/2227-1848-2023-2-132-144.