Download article

DOI 10.34014/2227-1848-2024-3-126-138

DRUG PRECURSOR TARGETING THE BOMBESIN RECEPTOR FOR PEPTIDE-RECEPTOR RADIONUCLIDE THERAPY

E.A. Beloborodov, E.V. Yurova, D.E. Sugak, E.S. Pogodina, E.V. Rastorgueva, Yu.V. Saenko

Ulyanovsk State University, Ulyanovsk, Russia

Cancer is a leading cause of death worldwide. A promising modality for cancer treatment is peptide receptor radionuclide therapy. Therapeutic radionuclide is delivered using peptide-based vectors, which can bind to specific receptors on the cancer cell surface. Bombesin receptors are one of the receptors peculiar to many types of cancer, which can be targeted by peptide vectors. Peptides have a number of advantages, but they also have one serious drawback: low stability in the internal environment. To solve the problem, it is possible to the include a therapeutic peptide in the structure of a highly stable knottin peptide.

Objective. The aim of the study is to examine the stability of BBN/C1-C2 structure, created on the basis of U5-scytotoxinSth1a knottin and bombesin tropic to bombesin receptor, and the ability of this structure to bind to target receptors on the cancer cell surface.

Materials and Methods. BBN/C1-C2 peptide was obtained by solid-phase peptide synthesis. Then, is underwent chromatography purification under analytical chromatography and mass spectrometry control. Stability was studied by analytical chromatography. Competitive inhibition analysis was carried out using a fluorescently labeled GRP peptide with excess BBN/C1-C2 and fluorescently labeled BBN/C1-C2 with GRP bombesin receptor inhibitor. Cancer cell line PC-3 expressing bombesin receptors and normal cell line CHO-K1 not expressing bombesin receptors were used in the work.

Results. The conducted studies have shown that hybrid BBN/C1-C2 peptide based on bombesin peptide inserted into the U5-scytotoxinSth1a knottin framework between the first and second cysteine residues has a greater stability compared to the commercial radiopharmaceutical PSMA-617. BBN/C1-C2 peptide is specific to bombesin receptor: it binds to PC-3 cancer cell line with a target bombesin receptor on its surface, and does not bind to the healthy CHO-K1 cell line, without a target receptor. BBN/C1-C2 peptide shows high affinity for the bombesin receptor, since GRP prevents its binding to the PC-3 cell line.

Key words: oncology, peptide, knottin, bombesin receptor.

 

Conflict of interest. The authors declare no conflict of interest.

Author contributions

Research concept and design: Beloborodov E.A., Yurova E.V., Saenko Yu.V.

Literature search, participation in the study, data processing: Beloborodov E.A.,

Yurova E.V., Sugak D.E., Pogodina E.S., Rastorgueva E.V.

Statistical data processing: Pogodina E.S.

Data analysis and interpretation: Beloborodov E.A., Yurova E.V., Saenko Yu.V.

Text writing and editing: Beloborodov E.A., Yurova E.V.

References

  1. Sung H., Ferlay J., Siegel R.L. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71 (3): 209–249.

  2. Saini K.S., Twelves C. Determining lines of therapy in patients with solid cancers: a proposed new systematic and comprehensive framework. Br J Cancer. 2021; 125 (2): 155–163.

  3. Choi H.Y., Chang J.E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int J Mol Sci. 2023; 24 (17): 13618.

  4. Merola E., Grana C.M. Peptide Receptor Radionuclide Therapy (PRRT): Innovations and Improvements. Cancers (Basel). 2023; 15 (11): 2975.

  5. Sriram K., Insel P.A. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol Pharmacol. 2018; 93 (4): 251–258.

  6. Jensen R.T., Battey J.F., Spindel E.R., Benya R.V. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev. 2008; 60 (1): 1–42.

  7. Moody T.W., Merali Z. Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides. 2004; 25 (3): 511–520.

  8. Ramos-Álvarez I., Moreno P., Mantey S.A. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides. 2015; 72: 128–144.

  9. Gonzalez N., Moody T.W., Igarashi H., Ito T., Jensen R.T. Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes. 2008; 15 (1): 58–64.

  10. Liolios C., Buchmuller B., Bauder-Wüst U. Monomeric and Dimeric 68Ga-Labeled Bombesin Analogues for Positron Emission Tomography (PET) Imaging of Tumors Expressing Gastrin-Releasing Peptide Receptors (GRPrs). J Med Chem. 2018; 61 (5): 2062–2074.

  11. Engel J.B., Keller G., Schally A.V., Halmos G., Hammann B., Nagy A. Effective inhibition of experimental human ovarian cancers with a targeted cytotoxic bombesin analogue AN-215. Clin Cancer Res. 2005; 11 (6): 2408–2415.

  12. Judmann B., Braun D., Wängler B., Schirrmacher R., Fricker G., Wängler C. Current State of Radiolabeled Heterobivalent Peptidic Ligands in Tumor Imaging and Therapy. Pharmaceuticals (Basel). 2020; 13 (8): 173.

  13. Faviana P., Boldrini L., Erba P.A. Gastrin-Releasing Peptide Receptor in Low Grade Prostate Cancer: Can It Be a Better Predictor Than Prostate-Specific Membrane Antigen? Front Oncol. 2021; 11: 650249.

  14. Patel O., Shulkes A., Baldwin G.S. Gastrin-releasing peptide and cancer. Biochim Biophys Acta. 2006; 1766 (1): 23–41.

  15. Kanashiro C.A., Schally A.V., Nagy A., Halmos G. Inhibition of experimental U-118MG glioblastoma by targeted cytotoxic analogs of bombesin and somatostatin is associated with a suppression of angiogenic and antiapoptotic mechanisms. Int J Oncol. 2005; 27 (1): 169–174.

  16. Moody T.W., Lee L., Ramos-Alvarez I., Iordanskaia T., Mantey S.A., Jensen R.T. Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne). 2021; 1 (12): 728088.

  17. Lin Y., Chen T., Zhou M., Wang L., Su S., Shaw C. Ranatensin-HL: A Bombesin-Related Tridecapeptide from the Skin Secretion of the Broad-Folded Frog, Hylarana latouchii. Molecules. 2017; 22 (7): 1110.

  18. Vadevoo S.M.P., Gurung S., Lee H.S. Peptides as multifunctional players in cancer therapy. Exp Mol Med. 2023; 55 (6): 1099–1109.

  19. Pernot M., Vanderesse R., Frochot C., Guillemin F., Barberi-Heyob M. Stability of peptides and therapeutic success in cancer. Expert Opin Drug Metab Toxicol. 2011; 7 (7): 793–802.

  20. Erak M., Bellmann-Sickert K., Els-Heindl S., Beck-Sickinger A.G. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics. Bioorg Med Chem. 2018; 26 (10): 2759–2765.

  21. Attah F.A., Lawal B.A., Yusuf A.B. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. Plants (Basel). 2022; 11 (23): 3271.

  22. Coin I., Beyermann M., Bienert M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nature Protocols, 2007; 2 (12): 3247–3256.

  23. Zhang H., Qi L., Cai Y., Gao X. Gastrin-releasing peptide receptor (GRPR) as a novel biomarker and therapeutic target in prostate cancer. Ann Med. 2024; 56 (1): 2320301.

  24. Mant C.T., Chen Y., Yan Z., Popa T.V., Kovacs J.M., Mills J.B., Tripet B.P., Hodges R.S. HPLC analysis and purification of peptides. Methods Mol Biol. 2007; 386: 3–55.

  25. Moore S.J., Leung C.L., Norton H.K., Cochran J.R. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One. 2013; 8 (4): 60498.

  26. Lumiprobe.com. Available at: https://ru.lumiprobe.com/protocols/nhs-ester-labeling (accessed: February 11, 2024).

  27. Bradley C.A. [177Lu]PSMA-617 radionuclide therapy shows promise. Nat Rev Urol. 2018; 15 (8): 468.

  28. Ferguson S., Wuest M., Richter S., Bergman C., Dufour J., Krys D., Simone J., Jans H.S., Riauka T., Wuest F. A comparative PET imaging study of 44gSc- and 68Ga-labeled bombesin antagonist BBN2 derivatives in breast and prostate cancer models. Nucl Med Biol. 2020: 90-91: 74–83.

  29. D'Huyvetter M., Xavier C., Caveliers V., Lahoutte T., Muyldermans S., Devoogdt N. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv. 2014; 11 (12): 1939–1954.

  30. Pernot M., Vanderesse R., Frochot C., Guillemin F., Barberi-Heyob M. Stability of peptides and therapeutic success in cancer. Expert Opin Drug Metab Toxicol. 2011; 7 (7): 793–802.

  31. Li X., Cai H., Wu X., Li L., Wu H., Tian R. New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Front Chem. 2020; 1 (8): 583309.

  32. Ariki N.K., Muñoz L.E., Armitage E.L., Goodstein F.R., George K.G., Smith V.L., Vetter I., Herzig V., King G.F., Loening N.M. Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica. PLoS One. 2016; 11 (5): 0156291.

  33. Jiang L., Kimura R.H., Miao Z. Evaluation of a (64)Cu-labeled cystine-knot peptide based on agouti-related protein for PET of tumors expressing alphavbeta3 integrin. J Nucl Med. 2010; 51 (2): 251–258.

  34. Ischia J., Patel O., Bolton D., Shulkes A., Baldwin G.S. Expression and function of gastrin-releasing peptide (GRP) in normal and cancerous urological tissues. BJU Int. 2014; 113 (2): 40-47.

  35. Chave H.S., Gough A.C., Palmer K., Preston S.R., Primrose J.N. Bombesin family receptor and ligand gene expression in human colorectal cancer and normal mucosa. Br J Cancer. 2000; 82 (1): 124–130.

  36. Pooja D., Gunukula A., Gupta N., Adams D.J., Kulhari H. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int J Biochem Cell Biol. 2019; 114: 105567.

  37. Rurarz B.P., Urbanek K.A., Karczmarczyk U., Raczkowska J., Habrowska-Górczyńska D.E., Kozieł M.J., Kowalska K., Kadłubowski S., Sawicka A., Maurin M., Piastowska-Ciesielska A.W., Ulański P. Towards Cancer Nanoradiopharmaceuticals-Radioisotope Nanocarrier System for Prostate Cancer Theranostics Based on Radiation-Synthesized Polymer Nanogels. Cancers (Basel). 2023; 15 (23): 5646.

Received March 20, 2024; accepted June 25, 2024.

 

Information about the authors

Beloborodov Evgeniy Alekseevich, Researcher, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-5666-5154

Yurova Elena Valer'evna, Junior Researcher, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: http://orcid.org/0000-0001-7484-2671

Sugak Dmitriy Evgen'evich, Junior Researcher, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-3276-8976

Pogodina Evgeniya Sergeevna, Candidate of Sciences (Biology), Senior Researcher, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0001-8183-5103

Rastorgueva Evgeniya Vladimirovna, Senior Lecturer, Chair of General and Clinical Pharmacology with a Course in Microbiology, Junior Researcher, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St. 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-1518-4677

Saenko Yuriy Vladimirovich, Doctor of Sciences (Biology), Leading Researcher, S.P. Kapitsa Research Institute of Technology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St. 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: http://orcid.org/0000-0002-4402-1482

 

For citation

Beloborodov E.A., Yurova E.V., Sugak D.E., Pogodina E.S., Rastorgueva E.V., Saenko Yu.V. Issledovanie predshestvennika preparata, natselennogo na retseptor bombezina, dlya peptid-retseptornoy radionuklidnoy terapii [Drug precursor targeting the bombesin receptor for peptide-receptor radionuclide therapy]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2024; 3: 126–138. DOI: 10.34014/2227-1848-2024-3-126-138 (in Russian).

 

Скачать статью

УДК 615.277.3

DOI 10.34014/2227-1848-2024-3-126-138

ИССЛЕДОВАНИЕ ПРЕДШЕСТВЕННИКА ПРЕПАРАТА, НАЦЕЛЕННОГО НА РЕЦЕПТОР БОМБЕЗИНА, ДЛЯ ПЕПТИД-РЕЦЕПТОРНОЙ РАДИОНУКЛИДНОЙ ТЕРАПИИ

Е.А. Белобородов, Е.В. Юрова, Д.Е. Сугак, Е.С. Погодина, Е.В. Расторгуева, Ю.В. Саенко

ФГБОУ ВО «Ульяновский государственный университет», г. Ульяновск, Россия

 

Онкозаболевания – одна из основных причин смерти от болезней во всем мире. Перспективным методом терапии онкопатологии является пептид-рецепторная радионуклидная терапия, в которой доставка терапевтического радионуклида осуществляется с помощью пептидных векторов, способных связываться со специфическими рецепторами на поверхности раковых клеток. Одними из характерных для многих типов рака рецепторов, на которые могут быть нацелены пептидные векторы, являются рецепторы бомбезина. Пептиды, обладая рядом преимуществ, имеют один серьезный недостаток – низкую стабильность в среде организма. Вариантом решения данной проблемы является включение терапевтического пептида в структуру высокостабильного пептида кноттина.

Цель. Изучить стабильность структуры BBN/C1-C2, созданной на основе кноттина U5-scyto­toxin-Sth1a и пептида бомбезина, тропного бомбезиновыму рецептору, и ее способность связываться с целевыми рецепторами на поверхности раковых клеток.

Материалы и методы. Пептид BBN/C1-C2 был получен методом твердофазного пептидного синтеза, после чего подвергался очистке методом хроматографии под контролем аналитической хроматографии и масс-спектометрии. Исследование стабильности проводилось методом аналитической хроматографии. Анализ конкурентного ингибирования проводился с помощью пептида GRP, меченного флуоресцентной меткой, при избытке BBN/C1-C2 и флуоресцентно меченого BBN/C1-C2 в присутствии ингибитора рецептора бомбезина GRP. В работе использовались раковая клеточная культура PC-3, экспрессирующая рецепторы бомбезина, и нормальная клеточная культура CHO-K1, не экспрессирующая рецепторы бомбезина.

Результаты. Проведенные исследования показали, что гибридный пептид BBN/C1-C2 на основе пептида бомбезина, встроенного в каркас кноттина U5-scytotoxin-Sth1a между первым и вторым остатком цистеина, обладает большей стабильностью по сравнению с коммерческим пептидным препаратом PSMA-617. Пептид BBN/C1-C2 проявляет специфичность в отношении бомбезинового рецептора, связываясь с раковой клеточной культурой PC-3, несущей на своей поверхности целевой рецептор бомбезина, и не связываяь со здоровой клеточной культурой CHO-K1, не несущей на своей поверхности целевого рецептора. Пептид BBN/C1-C2 показывает высокое сродство к рецептору бомбезина, поскольку GRP препятствует его связыванию с клеточной культурой PC-3.

Ключевые слова: онкология, пептид, кноттин, рецептор бомбезина.

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов

Концепция и дизайн исследования: Белобородов Е.А., Юрова Е.В., Саенко Ю.В.

Литературный поиск, участие в исследовании, обработка материала: Белобородов Е.А.,

Юрова Е.В., Сугак Д.Е., Погодина Е.С., Расторгуева Е.В.

Статистическая обработка данных: Погодина Е.С.

Анализ и интерпретация данных: Белобородов Е.А., Юрова Е.В., Саенко Ю.В.

Написание и редактирование текста: Белобородов Е.А., Юрова Е.В.

 

Литература

  1. Sung H., Ferlay J., Siegel R.L. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71 (3): 209–249.

  2. Saini K.S., Twelves C. Determining lines of therapy in patients with solid cancers: a proposed new systematic and comprehensive framework. Br J Cancer. 2021; 125 (2): 155–163.

  3. Choi H.Y., Chang J.E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int J Mol Sci. 2023; 24 (17): 13618.

  4. Merola E., Grana C.M. Peptide Receptor Radionuclide Therapy (PRRT): Innovations and Improvements. Cancers (Basel). 2023; 15 (11): 2975.

  5. Sriram K., Insel P.A. G Protein-Coupled Receptors as Targets for Approved Drugs: How Many Targets and How Many Drugs? Mol Pharmacol. 2018; 93 (4): 251–258.

  6. Jensen R.T., Battey J.F., Spindel E.R., Benya R.V. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev. 2008; 60 (1): 1–42.

  7. Moody T.W., Merali Z. Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides. 2004; 25 (3): 511–520.

  8. Ramos-Álvarez I., Moreno P., Mantey S.A. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides. 2015; 72: 128–144.

  9. Gonzalez N., Moody T.W., Igarashi H., Ito T., Jensen R.T. Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes. 2008; 15 (1): 58–64.

  10. Liolios C., Buchmuller B., Bauder-Wüst U. Monomeric and Dimeric 68Ga-Labeled Bombesin Analogues for Positron Emission Tomography (PET) Imaging of Tumors Expressing Gastrin-Releasing Peptide Receptors (GRPrs). J Med Chem. 2018; 61 (5): 2062–2074.

  11. Engel J.B., Keller G., Schally A.V., Halmos G., Hammann B., Nagy A. Effective inhibition of experimental human ovarian cancers with a targeted cytotoxic bombesin analogue AN-215. Clin Cancer Res. 2005; 11 (6): 2408–2415.

  12. Judmann B., Braun D., Wängler B., Schirrmacher R., Fricker G., Wängler C. Current State of Radiolabeled Heterobivalent Peptidic Ligands in Tumor Imaging and Therapy. Pharmaceuticals (Basel). 2020; 13 (8): 173.

  13. Faviana P., Boldrini L., Erba P.A. Gastrin-Releasing Peptide Receptor in Low Grade Prostate Cancer: Can It Be a Better Predictor Than Prostate-Specific Membrane Antigen? Front Oncol. 2021; 11: 650249.

  14. Patel O., Shulkes A., Baldwin G.S. Gastrin-releasing peptide and cancer. Biochim Biophys Acta. 2006; 1766 (1): 23–41.

  15. Kanashiro C.A., Schally A.V., Nagy A., Halmos G. Inhibition of experimental U-118MG glioblastoma by targeted cytotoxic analogs of bombesin and somatostatin is associated with a suppression of angiogenic and antiapoptotic mechanisms. Int J Oncol. 2005; 27 (1): 169–174.

  16. Moody T.W., Lee L., Ramos-Alvarez I., Iordanskaia T., Mantey S.A., Jensen R.T. Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne). 2021; 1 (12): 728088.

  17. Lin Y., Chen T., Zhou M., Wang L., Su S., Shaw C. Ranatensin-HL: A Bombesin-Related Tridecapeptide from the Skin Secretion of the Broad-Folded Frog, Hylarana latouchii. Molecules. 2017; 22 (7): 1110.

  18. Vadevoo S.M.P., Gurung S., Lee H.S. Peptides as multifunctional players in cancer therapy. Exp Mol Med. 2023; 55 (6): 1099–1109.

  19. Pernot M., Vanderesse R., Frochot C., Guillemin F., Barberi-Heyob M. Stability of peptides and therapeutic success in cancer. Expert Opin Drug Metab Toxicol. 2011; 7 (7): 793–802.

  20. Erak M., Bellmann-Sickert K., Els-Heindl S., Beck-Sickinger A.G. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics. Bioorg Med Chem. 2018; 26 (10): 2759–2765.

  21. Attah F.A., Lawal B.A., Yusuf A.B. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. Plants (Basel). 2022; 11 (23): 3271.

  22. Coin I., Beyermann M., Bienert M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nature Protocols, 2007; 2 (12): 3247–3256.

  23. Zhang H., Qi L., Cai Y., Gao X. Gastrin-releasing peptide receptor (GRPR) as a novel biomarker and therapeutic target in prostate cancer. Ann Med. 2024; 56 (1): 2320301.

  24. Mant C.T., Chen Y., Yan Z., Popa T.V., Kovacs J.M., Mills J.B., Tripet B.P., Hodges R.S. HPLC analysis and purification of peptides. Methods Mol Biol. 2007; 386: 3–55.

  25. Moore S.J., Leung C.L., Norton H.K., Cochran J.R. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One. 2013; 8 (4): 60498.

  26. Lumiprobe.com. URL: https://ru.lumiprobe.com/protocols/nhs-ester-labeling (дата обращения: 11.02.2024).

  27. Bradley C.A. [177Lu]PSMA-617 radionuclide therapy shows promise. Nat Rev Urol. 2018; 15 (8): 468.

  28. Ferguson S., Wuest M., Richter S., Bergman C., Dufour J., Krys D., Simone J., Jans H.S., Riauka T., Wuest F. A comparative PET imaging study of 44gSc- and 68Ga-labeled bombesin antagonist BBN2 derivatives in breast and prostate cancer models. Nucl Med Biol. 2020: 90-91: 74–83.

  29. D'Huyvetter M., Xavier C., Caveliers V., Lahoutte T., Muyldermans S., Devoogdt N. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv. 2014;

    11 (12): 1939–1954.

  30. Pernot M., Vanderesse R., Frochot C., Guillemin F., Barberi-Heyob M. Stability of peptides and therapeutic success in cancer. Expert Opin Drug Metab Toxicol. 2011; 7 (7): 793–802.

  31. Li X., Cai H., Wu X., Li L., Wu H., Tian R. New Frontiers in Molecular Imaging Using Peptide-Based Radiopharmaceuticals for Prostate Cancer. Front Chem. 2020; 1 (8): 583309.

  32. Ariki N.K., Muñoz L.E., Armitage E.L., Goodstein F.R., George K.G., Smith V.L., Vetter I., Herzig V., King G.F., Loening N.M. Characterization of Three Venom Peptides from the Spitting Spider Scytodes thoracica. PLoS One. 2016; 11 (5): 0156291.

  33. Jiang L., Kimura R.H., Miao Z. Evaluation of a (64)Cu-labeled cystine-knot peptide based on agouti-related protein for PET of tumors expressing alphavbeta3 integrin. J Nucl Med. 2010; 51 (2): 251–258.

  34. Ischia J., Patel O., Bolton D., Shulkes A., Baldwin G.S. Expression and function of gastrin-releasing peptide (GRP) in normal and cancerous urological tissues. BJU Int. 2014; 113 (2): 40-47.

  35. Chave H.S., Gough A.C., Palmer K., Preston S.R., Primrose J.N. Bombesin family receptor and ligand gene expression in human colorectal cancer and normal mucosa. Br J Cancer. 2000; 82 (1): 124–130.

  36. Pooja D., Gunukula A., Gupta N., Adams D.J., Kulhari H. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int J Biochem Cell Biol. 2019; 114: 105567.

  37. Rurarz B.P., Urbanek K.A., Karczmarczyk U., Raczkowska J., Habrowska-Górczyńska D.E., Kozieł M.J., Kowalska K., Kadłubowski S., Sawicka A., Maurin M., Piastowska-Ciesielska A.W., Ulański P. Towards Cancer Nanoradiopharmaceuticals-Radioisotope Nanocarrier System for Prostate Cancer Theranostics Based on Radiation-Synthesized Polymer Nanogels. Cancers (Basel). 2023; 15 (23): 5646.

Поступила в редакцию 20.03.2024; принята 25.06.2024.

 

Авторский коллектив

Белобородов Евгений Алексеевич – научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-5666-5154

Юрова Елена Валерьевна – младший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: http://orcid.org/0000-0001-7484-2671

Сугак Дмитрий Евгеньевич – младший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0002-3276-8976

Погодина Евгения Сергеевна – кандидат биологических наук, старший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0001-8183-5103

Расторгуева Евгения Владимировна – старший преподаватель кафедры общей и клинической фармакологии c курсом микробиологии, младший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: https://orcid.org/0000-0003-1518-4677

Саенко Юрий Владимирович – доктор биологических наук, ведущий научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID ID: http://orcid.org/0000-0002-4402-1482

 

Образец цитирования

Белобородов Е.А., Юрова Е.В., Сугак Д.Е., Погодина Е.С., Расторгуева Е.В., Саенко Ю.В. Исследование предшественника препарата, нацеленного на рецептор бомбезина, для пептид-рецепторной радионуклидной терапии. Ульяновский медико-биологический журнал. 2024; 3: 126–138. DOI: 10.34014/2227-1848-2024-3-126-138.