Download  article

DOI 10.34014/2227-1848-2021-2-147-156

ANTIAPOPTOTIC POTENTIAL OF SPIDER TOXINS

E.V. Yurova, E.A. Beloborodov, E.D. Tazintseva, D.E. Sugak, E.V. Rastorgueva

Ulyanovsk State University, Ulyanovsk, Russia

 

Arthropod peptide toxins rich in disulfide bonds are one of the potential sources of bioactive substances. Due to their structure, toxins have increased stability and are able to bind to ion channels, blocking them or changing the gating mechanism. Some spider toxins bind to different types of calcium channels. Calcium ions, in turn, play an important role in many cellular processes, namely, apoptosis.

The aim of this paper is to investigate the effect of a number of toxins – arachnid ion-channel blockers in – on intracellular processes associated with the induction of apoptosis in mammalian cells.

Materials and Methods. Toxins ω-hexatoxin-Hv1a, ω-theraphotoxin-Hhn2a were used in the study, as they are inhibitors of L- and P/Q-type calcium channels, respectively. Apoptosis was induced using the AC-1001H3 peptide. The authors used fluorescence microscopy to study the effect of toxins on the apoptosis level, oxidative stress, and mitochondrial potential in CHO-K1 cells.

Results. The authors observed that incubation of cells with toxins (10 nM) and AC-1001H3 peptide led to increased ROI intracellular concentration, which should have induced apoptotic mechanisms. However, the effect was the opposite. In addition, there was an increase in the mitochondrial potential level. Despite this, the used toxins blocked apoptosis caused by AC-1001H3 and reduced the natural apoptosis level in the CHO-K1 cells.

Conclusion. The study demonstrated the antiapoptotic effect of some arthropod peptide toxins. The studied toxins can be used in the treatment of pathologies associated with the activation of apoptotic mechanisms.

Keywords: apoptosis, spider toxin, peptide.

Conflict of interest. The authors declare no conflict of interest.

 

References

  1. Jolene L.L., Michael K.D. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018; 26: 2700–2707.

  2. Gentilucci L., Tolomelli A., Squassabia F. Peptides and Peptidomimetics in Medicine, Surgery and Biotechnology. Cur. Med. Chem. 2006; 13: 2449–2466.

  3. Tesauro D., Accardo A., Diaferia C., Milano V., Guillon J., Ronga L., Rossi F. Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives. Molecules. 2019; 24: 351.

  4. Stepensky D. Pharmacokinetics of Toxin-Derived Peptide Drugs. Toxins. 2018; 10: 483.

  5. Postic G., Gracy J., Périn Ch., Chiche L., Gelly J. KNOTTIN: the database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling. Nucleic Acids Res. 2018; 46: D454–D458.

  6. Saez N.J. Spider-Venom Peptides as Therapeutics. Toxins. 2010; 2: 2851–2871.

  7. Lahiani A., Yavin E., Lazarovici P. The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals. Toxins. 2017; 9: 107.

  8. Kondratskyi A., Kondratska K., Skryma R., Prevarskaya N. Ion channels in the regulation of apoptosis. Biochim. Biophys. Acta Biomembr. 2015; 1848: 2532–2546.

  9. Görlach A., Bertram K., Hudecova S., Krizanova O. Calcium and ROS: A mutual interplay. Redox Biology. 2015; 6: 260–271.

  10. Kramer I.M. Intracellular Calcium. In: Signal Transduction. 3rd ed. Elsevier Inc.; 2015: 381–439.

  11. Pinto M.C.X. Calcium signaling and cell proliferation. Cell. Signal. 2015; 27: 2139–2149.

  12. Trautmann A., Akdis M., Blaser K., Akdis A. Role of dysregulated apoptosis in atopic dermatitis. Apoptosis. 2000; 5: 425–429.

  13. Krijnen P.A.J., Nijmeijer R., Meijer C.J.L.M., Visser C.A., Hack C.E., Niessen H.W.M. Apoptosis in myocardial ischaemia and infarction. J. Clin. Pathol. 2002; 55: 801–811.

  14. Chong Y., Hayes J., Sollod B., Wen S., Wilson D., Hains P., Hodgson W., Broady K., King G., Nicholson N. The ω-atracotoxins: Selective blockers of insect M-LVA and HVA calcium channels. Biochem. Pharmacol. 2007; 74: 623–638.

  15. Tang X., Zhang Y., Hu W., Xu D., Tao H., Yang X., Li Y., Jiang L., Liang S. Molecular Diversification of Peptide Toxins from the Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Based on Transcriptomic, Peptidomic, and Genomic Analyses. J. Proteome Res. 2010; 9: 2550–2564.

  16. Rabaç A.N., Arruda D.C., Figueiredo C.R., Massaoka M.H., Farias C.F., Tada D.B., Maia V.C., Silva P.I., Girola N., Real F., Mortara R.A., Polonelli L., Travassos L.R. AC‐1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model. FEBS Open Bio. 2016; 6: 885–901.

  17. Bolaños J.M.G., Morán A.M., Balao da Silva C.M., Rodríguez A.M., Dávila M.P., Aparicio I.M., Tapia J.A., Ferrusola C.O., Peña F.J. Autophagy and Apoptosis Have a Role in the Survival or Death of Stallion Spermatozoa during Conservation in Refrigeration. PLoS ONE. 2012; 7: e30688.

  18. Saenko Y.V., Glushchenko E. S., Zolotovskii I.O., Sholokhov. E., Kurkov A. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm. Laser Med. Sci. 2016; 31: 405–413.

  19. Khokhlova A., Zolotovskii I., Pogodina E., Saenko Y., Stoliarov D., Vorsina S., Fotiadi A., Liamina D., Sokolovski S., Rafailov E. Effects of high and low level 1265 nm laser irradiation on HCT116 cancer cells. Proceedings of the SPIE. 2019; 10861.

  20. Rao R.V., Castro-Obregon S., Frankowski H., Schuler M., Stoka V., Rio G., Bredesen D., Ellerby H.M. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 2002; 277: 21836–21842.

  21. Xu C., Bailly-Maitre B., Reed J.C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 2005; 115: 2656–2664.

  22. Potter D.A., Tirnauer J.S., Janssen R., Croall D.E., Hughes C.N., Fiacco K.A., Mier J.W., Maki M., Herman I.M. Calpain regulates actin remodeling during cell spreading. J. Cell Biol. 1998; 141: 647–662.

  23. Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, Mol. Cell. Res. 2016; 1863: 2977–2992.

  24. Brookes P. S., Yoon Y., Robotham J. L., Anders M. W., Sheu S.-S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004; 287: C817–833.

  25. Starkov A. A., Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 2003; 86: 1101–1107.

  26. Kim I., Rodriguez-Enriquez S., Lemasters J.J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 2007; 462: 245–253.

Received 19 March 2021; accepted 19 May 2021.

 

Information about the authors

Yurova Elena Valer'evna, Postgraduate Student, Junior Researcher, Institute of Science and Technology named after S.P. Kapitsa, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0001-7484-2671

Beloborodov Evgeniy Alekseevich, Postgraduate Student, Junior Researcher, Institute of Science and Technology named after S.P. Kapitsa, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-5666-5154

Tazintseva Elizaveta Dmitrievna, Junior Researcher, Institute of Science and Technology named after S.P. Kapitsa, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-2320-0043

Sugak Dmitriy Evgen'evich, Research Engineer, Institute of Science and Technology named after S.P. Kapitsa, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-3276-8976

Rastorgueva Evgeniya Vladimirovna, Senior Lecturer, Chair of General and Clinical Pharmacology with a Course in Microbiology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-1518-4677

 

For citation

Yurova E.V., Beloborodov E.A., Tazintseva E.D., Sugak D.E., Rastorgueva E.V. Antiapoptoticheskie svoystva toksinov paukov [Antiapoptotic potential of spider toxins]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2021; 2: 147–156. DOI: 10.34014/2227-1848-2021-2-147-156 (in Russian).

 

Скачать статью

УДК 576.367+577.29

DOI 10.34014/2227-1848-2021-2-147-156

АНТИАПОПТОТИЧЕСКИЕ СВОЙСТВА ТОКСИНОВ ПАУКОВ

Е.В. Юрова, Е.А. Белобородов, Е.Д. Тазинцева, Д.Е. Сугак, Е.В. Расторгуева

ФГБОУ ВО «Ульяновский государственный университет», г. Ульяновск, Россия

 

Пептидные токсины членистоногих, богатые дисульфидными связями, являются одним из потенциальных источников биоактивных веществ. За счет своей структуры токсины обладают повышенной стабильностью и способны связываться с ионными каналами, блокируя их или изменяя механизм стробирования. Ряд токсинов пауков способен связываться с кальциевыми каналами разных типов. Ионы кальция в свою очередь играют важную роль во многих процессах в клетке, одним из которых является апоптоз.

Цель работы – исследовать влияние ряда токсинов – блокаторов ионных каналов паукообразных – на внутриклеточные процессы, связанные с индукцией апоптоза в клетках млекопитающих.

Материалы и методы. В исследовании использовались токсины ω-hexatoxin-Hv1a, ω-theraphotoxin-Hhn2a, которые являются ингибиторами кальциевых каналов L- и P/Q-типов соответственно. Индукция апоптоза проводилась с использованием пептида AC-1001H3. Изучалось влияние токсинов на уровень апоптоза, оксидативного стресса и митохондриального потенциала в клетках линии CHO-K1 с использованием методов флуоресцентной микроскопии.

Результаты. Было установлено, что инкубация клеток с токсинами в концентрации 10 нМ и индуктором апоптоза AC-1001H3 приводила к росту внутриклеточной концентрации активных форм кислорода, что должно индуцировать апоптотические механизмы, однако эффект был противоположным. Кроме того, происходило повышение уровня митохондриального потенциала. Несмотря на это использованные токсины блокировали апоптоз, вызванный AC-1001Н3, и снижали уровень естественного апоптоза в культуре клеток CHO-K1.

Выводы. Проведенное исследование продемонстрировало антиапоптотический эффект ряда пептидных токсинов членистоногих. Изученные токсины могут найти применение при лечении патологии, связанной с активацией апоптотических механизмов.

Ключевые слова: апоптоз, токсин паука, пептид.

 

Литература

  1. Jolene L.L., Michael K.D. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018; 26: 2700–2707.

  2. Gentilucci L., Tolomelli A., Squassabia F. Peptides and Peptidomimetics in Medicine, Surgery and Biotechnology. Cur. Med. Chem. 2006; 13: 2449–2466.

  3. Tesauro D., Accardo A., Diaferia C., Milano V., Guillon J., Ronga L., Rossi F. Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives. Molecules. 2019; 24: 351.

  4. Stepensky D. Pharmacokinetics of Toxin-Derived Peptide Drugs. Toxins. 2018; 10: 483.

  5. Postic G., Gracy J., Périn Ch., Chiche L., Gelly J. KNOTTIN: the database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling. Nucleic Acids Res. 2018; 46: D454–D458.

  6. Saez N.J. Spider-Venom Peptides as Therapeutics. Toxins. 2010; 2: 2851–2871.

  7. Lahiani A., Yavin E., Lazarovici P. The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals. Toxins. 2017; 9: 107.

  8. Kondratskyi A., Kondratska K., Skryma R., Prevarskaya N. Ion channels in the regulation of apoptosis. Biochim. Biophys. Acta Biomembr. 2015; 1848: 2532–2546.

  9. Görlach A., Bertram K., Hudecova S., Krizanova O. Calcium and ROS: A mutual interplay. Redox Biology. 2015; 6: 260–271.

  10. Kramer I.M. Intracellular Calcium. In: Signal Transduction. 3rd ed. Elsevier Inc.; 2015: 381–439.

  11. Pinto M.C.X. Calcium signaling and cell proliferation. Cell. Signal. 2015; 27: 2139–2149.

  12. Trautmann A., Akdis M., Blaser K., Akdis A. Role of dysregulated apoptosis in atopic dermatitis. Apoptosis. 2000; 5: 425–429.

  13. Krijnen P.A.J., Nijmeijer R., Meijer C.J.L.M., Visser C.A., Hack C.E., Niessen H.W.M. Apoptosis in myocardial ischaemia and infarction. J. Clin. Pathol. 2002; 55: 801–811.

  14. Chong Y., Hayes J., Sollod B., Wen S., Wilson D., Hains P., Hodgson W., Broady K., King G., Nicholson N. The ω-atracotoxins: Selective blockers of insect M-LVA and HVA calcium channels. Biochem. Pharmacol. 2007; 74: 623–638.

  15. Tang X., Zhang Y., Hu W., Xu D., Tao H., Yang X., Li Y., Jiang L., Liang S. Molecular Diversification of Peptide Toxins from the Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Based on Transcriptomic, Peptidomic, and Genomic Analyses. J. Proteome Res. 2010; 9: 2550–2564.

  16. Rabaç A.N., Arruda D.C., Figueiredo C.R., Massaoka M.H., Farias C.F., Tada D.B., Maia V.C., Silva P.I., Girola N., Real F., Mortara R.A., Polonelli L., Travassos L.R. AC‐1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model. FEBS Open Bio. 2016; 6: 885–901.

  17. Bolaños J.M.G., Morán A.M., Balao da Silva C.M., Rodríguez A.M., Dávila M.P., Aparicio I.M., Tapia J.A., Ferrusola C.O., Peña F.J. Autophagy and Apoptosis Have a Role in the Survival or Death of Stallion Spermatozoa during Conservation in Refrigeration. PLoS ONE. 2012; 7: e30688.

  18. Saenko Y.V., Glushchenko E. S., Zolotovskii I.O., Sholokhov. E., Kurkov A. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm. Laser Med. Sci. 2016; 31: 405–413.

  19. Khokhlova A., Zolotovskii I., Pogodina E., Saenko Y., Stoliarov D., Vorsina S., Fotiadi A., Liamina D., Sokolovski S., Rafailov E. Effects of high and low level 1265 nm laser irradiation on HCT116 cancer cells. Proceedings of the SPIE. 2019; 10861.

  20. Rao R.V., Castro-Obregon S., Frankowski H., Schuler M., Stoka V., Rio G., Bredesen D., Ellerby H.M. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 2002; 277: 21836–21842.

  21. Xu C., Bailly-Maitre B., Reed J.C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 2005; 115: 2656–2664.

  22. Potter D. A., Tirnauer J.S., Janssen R., Croall D.E., Hughes C.N., Fiacco K.A., Mier J.W., Maki M., Herman I.M. Calpain regulates actin remodeling during cell spreading. J. Cell Biol. 1998; 141: 647–662.

  23. Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, Mol. Cell. Res. 2016; 1863: 2977–2992.

  24. Brookes P. S., Yoon Y., Robotham J. L., Anders M. W., Sheu S.-S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004; 287: C817–833.

  25. Starkov A.A., Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 2003; 86: 1101–1107.

  26. Kim I., Rodriguez-Enriquez S., Lemasters J.J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 2007; 462: 245–253.

Поступила в редакцию 19.03.2021; принята 19.05.2021.

 

Авторский коллектив

Юрова Елена Валерьевна – аспирант, младший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0001-7484-2671

Белобородов Евгений Алексеевич – аспирант, младший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-5666-5154

Тазинцева Елизавета Дмитриевна – младший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-2320-0043

Сугак Дмитрий Евгеньевич – инженер-исследователь НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-3276-8976

Расторгуева Евгения Владимировна – старший преподаватель кафедры общей и клинической фармакологии c курсом микробиологии, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л.Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-1518-4677

 

Образец цитирования

Юрова Е.В., Белобородов Е.А., Тазинцева Е.Д., Сугак Д.Е., Расторгуева Е.В. Антиапоптотические свойства токсинов пауков. Ульяновский медико-биологический журнал. 2021; 2: 147–156. DOI: 10.34014/2227-1848-2021-2-147-156.