Download article

DOI 10.34014/2227-1848-2022-2-102-116

ALCOHOL-INDUCED EXPRESSION OF VASCULAR ENDOTHELIALGROWTH FACTOR AND STRUCTURAL CHANGES IN RAT CARDIOMYOCYTES

P.V. Belogubov, V.I. Ruzov, S.M. Clesarev, R.R. Sharafutdinova

Ulyanovsk State University, Ulyanovsk, Russia

 

The aim of the study is to reveal the ethanol effects on the expression of hypoxia-associated factors (HIF-1α, VEGF-A) and structural changes in cardiomyocytes of healthy rats.

Materials and methods. Ethanol-induced structural changes in cardiomyocytes were studied in 60 outbred mature rats. Control animals were intragastrically injected with sterile 0.9% saline, experimental animals – with 40 % ethanol. Ethanol exposure on myocardium lasted 4 and 8 days. Morphological study of the heart was carried out after decapitation preceded by ether anesthesia. PCR tests were used to determine mRNA expression of HIF-1α and VEGF-A genes from the left ventricle and serum concentration of vascular endothelial growth factor. Morphological studies of the left ventricle myocardium were carried out on histological sections using light microscopy.

Results. A short ethanol exposure was accompanied by fatty and granular cytoplasm degeneration of cardiomyocytes with erythrocyte stasis in capillaries, arterioles and venules. VEGF-A serum concentration in control rats was lower if compared with ethanol-induced rats. Gender differences to ethanol response were revealed, in particular, a more pronounced HIF-1α and VEGF-A mRNA expression in females compared to males on the background of 4-day ethanol exposure, which correlated with VEGF-A level in blood serum. 8-day alcohol exposure was accompanied by an increase in VEGF-A mRNA expression in both female and male rats.

Conclusion. Ethanol exposure causes activation of HIF-1α and VEGF-A transcription factors in cardiomyocytes of rats. It can be regarded as a mechanism of urgent adaptation without the development of pronounced structural maladaptive changes of the myocardium.

Key words: VEGF-A, HIF-1α, hypoxia-associated factors, ethanol exposure, mRNA expression, alcohol-induced myocardial changes.

 

References

  1. Luk'yanova L.D. Sovremennye problemy adaptatsii k gipoksii. Signal'nye mekhanizmy i ikh rol' v sistemnoy regulyatsii [Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation]. Patologicheskaya fiziologiya i eksperimental'naya terapiya. 2011; 1: 3–19 (in Russian).

  2. Serebrovskaya T.V. Novaya strategiya v lechenii bolezney: gipoksiya-indutsiruemyy faktor [A new strategy in the treatment of diseases: Hypoxia-inducible factor]. Vestnik Mezhdunarodnoy akademii nauk. 2006; 1: 29–31 (in Russian).

  3. Solkin A.A., Belyavskiy N.N., Kuznetsov V.I., Nikolaeva A.G. Osnovnye mekhanizmy formirovaniya zashchity golovnogo mozga pri adaptatsii k gipoksii [Main mechanisms of brain protection formation during adaptation to hypoxia]. Vestnik VGMU. 2012; 1 (11): 6–14 (in Russian).

  4. Sadaghianloo N., Yamamoto K., Bai H., Tsuneki M., Protack C.D., Hall M.R., Declemy S., Hassen-Khodja R., Madri J., Dardik A. Increased Oxidative Stress and Hypoxia Inducible Factor-1 Expression during Arteriovenous Fistula Maturation. Ann. Vasc. Surg. 2017; 41: 225–234. DOI: 10.1016/j.avsg. 2016.09.014.

  5. Serebrovskaya T.V. Gipoksiya-indutsibel'nyy faktor: rol' v patofiziologii dykhaniya [Hypoxia-inducible factor: Role in respiration pathophysiology]. Ukrainskiy pul'monologicheskiy zhurnal. 2005; 3: 77–81 (in Russian).

  6. Shustov E.B., Karkishchenko N.N., Dulya M.S., Semenov Kh.Kh., Okovityy S.V., Rad'ko S.V. Ekspressiya gipoksiya-indutsibel'nogo faktora NIF1α kak kriteriy razvitiya gipoksii tkaney [Expression of HIF1α hypoxia-inducible factor as a criterion for tissue hypoxia development]. Biomeditsina. 2015; 4: 4–15 (in Russian).

  7. Sun J.Y., Chen X.Y., Wang L., Ye W.X., Shen S.J., Yang J.L., Yao M., Yao D.F. Hypoxia-inducible factor-1α mediates and regulates angiogenesis-related factors expression in hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2020; 28 (11): 942–948. DOI: 10.3760/cma.j.cn501113-20200228-00074.

  8. Morris N.L., Yeligar S.M. Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules. 2018; 8 (4): 170. DOI: 10.3390/biom8040170.

  9. Satishchandran A., Ambade A., Rao S., Hsueh Y.C., Iracheta-Vellve A., Tornai D., Lowe P., Gyongyosi B., Li J., Catalano D., Zhong L., Kodys K., Xie J., Bala S., Gao G., Szabo G. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease. Gastroenterology. 2018; 154 (1): 238–252. DOI: 10.1053/j.gastro.2017.09.022.

  10. Novikov V.E., Levchenkova O.S. Gipoksiey indutsirovannyy faktor (HIF-1α) kak mishen' farmakologicheskogo vozdeystviya [Hypoxia-inducing factor (HIF-1α) as a target for pharmacological treatment]. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii. 2013; 11 (2): 8–16. DOI: 10.17816/RCF1128-16 (in Russian).

  11. Kouvaras E., Christoni Z., Siasios I., Malizos K., Koukoulis G.K., Ioannou M. Hypoxia-inducible factor 1-alpha and vascular endothelial growth factor in cartilage tumors. Biotech. Histochem. 2019; 94 (4): 283–289. DOI: 10.1080/10520295.2018.1556806.

  12. Zhu Y., Wang Y., Jia Y., Xu J., Chai Y. Roxadustat promotes angiogenesis through HIF-1α/VEGF /VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019; 27 (4): 324–334. DOI: 10.1111/wrr.12708.

  13. Zhao T., Zhao W., Meng W., Liu C., Chen Y., Gerling I.C., Weber K.T., Bhattacharya S.K., Kumar R., Sun Y. VEGF-C/VEGFR-3 pathway promotes myocyte hypertrophy and survival in the infracted myocardium. Am. J. Transl. Res. 2015; 7 (4): 697–709.

  14. Braile M., Marcella S., Cristinziano L., Galdiero M.R., Modestino L., Ferrara A.L., Varricchi G., Marone G., Loffredo S. VEGF-A in Cardiomyocytes and Heart Diseases. Int. J. Mol. Sci. 2020; 21 (15): 5294. DOI: 10.3390/ijms21155294.

  15. Merentie M., Rissanen R., Lottonen-Raikaslehto L., Huusko J., Gurzeler E., Turunen M.P., Holappa L., Makinen P., Yla-Herttuala S. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice. PLoS One. 2018; 13 (1): e0190981. DOI: 10.1371/journal.pone.0190981.

  16. Shodikulova G.Z. Vliyanie L-arginina na disfunktsiyu endoteliya u bol'nykh s vrozhdennym prolapsom mitral'nogo klapana [Effect of L-arginine on endothelial dysfunction in patients with congenital mitral valve prolapse]. Kazanskiy meditsinskiy zhurnal. 2014; 3 (95): 326–331 (in Russian).

  17. Potente M., Carmeliet P. The Link Between Angiogenesis and Endothelial Metabolism. Ann. Rev. Physiol. 2017; 79: 43–66 DOI: 10.1146/annurev-physiol-021115-105134.

  18. Melincovici C.S., Boşca A.B., Şuşman S., Mărginean M., Mihu C., Istrate M., Moldovan I.M., Roman A.L., Mihu C.M. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018; 59 (2): 455–467.

  19. Pulkkinen H.H., Kiema M., Lappalainen J.P., Toropainen A., Beter M., Tirronen A., Holappa L., Niskanen H., Kaikkonen M.U., Ylä-Herttuala S., Laakkonen J.P. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis. 2021; 24 (1): 129–144. DOI: 10.1007/s10456-020-09748-4.

  20. Gianni-Barrera R., Butschkau A., Uccelli A., Certelli A., Valente P., Bartolomeo M., Groppa E., Burger M.G., Hlushchuk R., Heberer M., Schaefer D.J., Gürke L., Djonov V., Vollmar B., Banfi A. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis. 2018; 21 (4): 883–900. DOI: 10.1007/s10456-018-9634-5.

  21. Radek K.A., Matthies A.M., Burns A.L., Heinrich S.A., Kovacs E.J., Dipietro L.A. Acute ethanol exposure impairs angiogenesis and the proliferative aspects of wound healing. Am. J. Physiol. Heart. Circ. Physiol. 2005; 289: 1084–1090. DOI: 10.1152/ajpheart.00080.2005.

  22. Chen Y., Zhao B., Zhu Y., Zhao H., Ma C. HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis. Am. J. Transl. Res. 2019; 11 (5): 2969–2982.

  23. Gelashvili O.A. Variant periodizatsii biologicheski skhodnykh stadiy ontogeneza cheloveka i krysy [Variant of periodization of biologically similar stages of human and rat ontogenesis]. Saratovskiy nauchno-meditsinskiy zhurnal. 2008; 4 (22): 125–126 (in Russian).

  24. Ryakhovskiy A.E., Enikeev D.A., Baykov D.E., Fatkullin K.V. Eksperimental'noe modelirovanie razlichnykh stepeney alkogol'nogo op'yaneniya u krys [Experimental modeling of various degrees of alcohol intoxication in rats]. Meditsinskiy vestnik Bashkortostana. 2017; 1 (67): 76–81 (in Russian).

  25. Vtorushina Yu.S. Sostoyanie op'yaneniya v sisteme norm Obshchey i Osobennoy chastey UK RF [Intoxication in the system of rules of General and Special parts of the Criminal Code]. Sibirskiy yuridicheskiy vestnik. 2018; 2 (81): 71–75 (in Russian).

  26. António C., Päpke C., Rocha M., Diab H., Limami A.M., Obata T., Fernie A.R., van Dongen J.T. Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol. 2016; 170 (1): 43–56. DOI: 10.1104/pp.15.00266.

  27. Tsibul'nikov S.Yu. Ishemicheskie i reperfuzionnye povrezhdeniya serdtsa: rol' Sa-kanalov 1-tipa i Na+/h+-obmennika, analiz eksperimental'nykh i klinicheskikh dannykh [Ischemic and reperfusion injury of the heart: The role of L-type Ca2+ channel and Na+/h+ exchanger. Analysis of experimental and clinical data]. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. 2019; 105 (7): 801–811 (in Russian).

  28. Zeriouh M., Sabashnikov A., Tenbrock A., Neef K., Merkle J., Eghbalzadeh K., Weber C., Liakopoulos O.J., Deppe A.C., Stamm C., Cowan D.B., Wahlers T., Choi Y.H. Dysregulation of proangiogeneic factors in pressure-overload left-ventricular hypertrophy results in inadequate capillary growth. Ther. Adv. Cardiovasc. Dis. 2019; 13: 1753944719841795. DOI: 10.1177/1753944719841795.

  29. Xiao Y., Wang T., Song X., Yang D., Chu Q., Kang Y.J. Copper promotion of myocardial regeneration. Exp. Biol. Med. (Maywood). 2020; 245 (10): 911–921. DOI: 10.1177/1535370220911604.

  30. Semenza G.L. Oxygensensing, hypoxia-induciblefactors, and disease pathophysiology. Annu. Rev. Pathol. 2014; 9: 47–71. DOI: 10.1146/annurev-pathol-012513-104720.

  31. Serocki M., Bartoszewska S., Janaszak-Jasiecka A., Ochocka R.J., Collawn J.F., Bartoszewski R. miRNA sregulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis. 2018; 21 (2): 183–202. DOI: 10.1007/s10456-018-9600-2.

  32. Chiu D.K., Tse A.P., Xu I.M., Di Cui J., Lai R.K., Li L.L., Koh H.Y., Tsang F.H., Wei L.L., Wong C.M., Ng I.O., Wong C.C. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 2017; 8 (1): 517. DOI: 10.1038/s41467-017-00530-7.

  33. Balykin M.V., Sagidova S.A., Zharkov A.S., Ayzyatulova E.D., Pavlov D.A., Antipov I.V. Vliyanie preryvistoy gipobaricheskoy gipoksii na ekspressiyu hif-1α i morfofunktsional'nye izmeneniya v miokarde [Effect of intermittent hypobaric hypoxia on HIF-1α expression and morphofunctional changes in the myocardium]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2017; 2: 125–134. DOI: 10.23648/ UMBJ.2017.26.6227 (in Russian).

  34. Zhang D., Lv F.L., Wang G.H. Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression. Eur. Rev. Med. Pharmacol. Sci. 2018; 22 (16): 5071–5076. DOI: 10.26355/eurrev_ 201808_15699.

  35. Fan J., Lv H., Li J., Che Y., Xu B., Tao Z., Jiang W. Roles of Nrf2/HO-1 and HIF-1α/VEGF in lung tissue injury and repair following cerebral ischemia/reperfusion injury. J. Cell. Physiol. 2019; 234 (6): 7695–7707. DOI: 10.1002/jcp.27767.

  36. Xiang Y., Yao X., Wang X., Zhao H., Zou H., Wang L., Zhang Q.X. Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: in vivo and in vitro. Biosci. Rep. 2019; 39 (10): BSR 20191006. DOI: 10.1042/BSR20191006.

  37. Dopico A.M., Bukiya A.N., Martin G.E. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior. Front. Physiol. 2014; 5: 466. DOI: 10.3389/fphys.2014.00466.

  38. Lukyanova L.D., Sukoyan G.V., Kirova Y.I. Role of proinflammatory factors, nitric oxide, and some parameters of lipid metabolism in the development of immediate adaptation to hypoxia and HIF-1α accumulation. Bull. Exp. Biol. Med. 2013; 154 (5): 597–601. DOI: 10.1007/s10517-013-2008-5.

  39. Rana N.K., Singh P., Koch B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol. Res. 2019; 52 (1): 12. DOI: 10.1186/s40659-019-0221-z.

  40. Rashid M., Zadeh L.R., Baradaran B., Molavi O., Ghesmati Z., Sabzichi M., Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene. 2021; 798: 145796. DOI: 10.1016/j.gene.2021.145796.

  41. Casillas A.L., Chauhan S.S., Toth R.K., Sainz A.G., Clements A.N., Jensen C.C., Langlais P.R., Miranti C.K., Cress A.E., Warfel N.A. Direct phosphorylation and stabilization of HIF-1α by PIM1 kinase drives angiogenesis in solid tumors. Oncogene. 2021; 40 (32): 5142–5152. DOI: 10.1038/s41388-021-01915-1.

  42. Tran J., Magenau A., Rodriguez M., Rentero C., Royo T., Enrich C., Thomas S.R., Grewal T., Gaus K. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells. PLoS One. 2016; 11 (3): e0151556. DOI: 10.1371/journal.pone.0151556.

  43. Luengas-Martinez A., Hardman-Smart J., Rutkowski D., Purba T.S., Paus R., Young H.S. Vascular Endothelial Growth Factor Blockade Induces Dermal Endothelial Cell Apoptosis in a Clinically Relevant Skin Organ Culture Model. Skin Pharmacol. Physiol. 2020; 33 (3): 110–118. DOI: 10.1159/000508344.

  44. Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis. 2017; 22 (6): 741–752. DOI: 10.1007/s10495-017-1372-4.

  45. Cinelli M.A., Do H.T., Miley G.P., Silverman R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev. 2020; 40 (1): 158–189. DOI: 10.1002/med.21599.

  46. Krenz M., Cohen M.V., Downey J.M. Protective and anti-protective effects of acute ethanol exposure in myocardial ischemia/reperfusion. Pathophysiology. 2004; 10 (2): 113–119. DOI: 10.1016/j.pathophys.2003.10.006.

  47. Krylova I.B., Selina E.N., Bulion V.V., Rodionova O.M., Evdokimova N.R., Belosludtseva N.V., Shigaeva M.I., Mironova G.D. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Sci. Rep. 2021; 11 (1): 16999. DOI: 10.1038/s41598-021-96562-7.

 Received 12 March 2022; accepted 13 May 2022.

 

Information about the authors

Belogubov Pavel Vasil'evich, Post-graduate Student, Chair of Faculty Therapy, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-8377-1569

Ruzov Viktor Ivanovich, Doctor of Sciences (Medicine), Professor, Honored Doctor of the Russian Federation, Head of the Chair of Faculty Therapy, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-7510-3504

Slesarev Sergey Mikhaylovich, Doctor of Sciences (Biology), Associate Professor, Head of the Chair of Biology, Ecology and Nature Management, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-5080-1004

Sharafutdinova Rizida Rafaelevna, Post-graduate Student, Chair of Faculty Therapy, Teaching Assistant, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-2768-5452

 

For citation

Belogubov P.V., Ruzov V.I., Clesarev S.M., Sharafutdinova R.R. Indutsirovannaya alkogolem ekspressiya sosudistogo endotelial'nogo faktora rosta i strukturnye izmeneniya kardiomiotsitov krys [Alcohol-induced expression of vascular endothelial growth factor and structural changes in rat cardiomyocytes]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2022; 2: 102–116. DOI: 10.34014/2227-1848-2022-2-102-116 (in Russian).

 

Скачать статью

УДК 616-092.9

DOI 10.34014/2227-1848-2022-2-102-116

ИНДУЦИРОВАННАЯ АЛКОГОЛЕМ ЭКСПРЕССИЯ СОСУДИСТОГО ЭНДОТЕЛИАЛЬНОГО ФАКТОРА РОСТА И СТРУКТУРНЫЕ ИЗМЕНЕНИЯ КАРДИОМИОЦИТОВ КРЫС

П.В. Белогубов, В.И. Рузов, С.М. Cлесарев, Р.Р. Шарафутдинова

ФГБОУ ВО «Ульяновский государственный университет», г. Ульяновск, Россия

 

Цель – выявить влияние этанола на экспрессию связанных с гипоксией генов (HIF-1α, VEGF-А) и структурные изменения в кардиомиоцитах здоровых крыс.

Материалы и методы. Структурные изменения кардиомиоцитов под воздействием этанола изучались на 60 беспородных половозрелых крысах. Животным контрольной группы вводился интрагастрально стерильный 0,9 % водный раствор хлорида натрия, остальным животным – 40 % этанол. Длительность воздействия этанола на миокард составляла 4 и 8 сут. Морфологическое исследование сердца животных проводилось после декапитации под эфирным наркозом. Определялась экспрессия мРНК генов HIF-1α и VEGF-A из участка левого желудочка сердца и сывороточная концентрация сосудисто-эндотелиального фактора роста методом ПЦР. Морфологические исследования миокарда левого желудочка сердца проводились по гистологическим срезам методом световой микроскопии.

Результаты. Короткое по продолжительности воздействие этанола сопровождалось признаками жировой и зернистой дистрофии цитоплазмы кардиомиоцитов с явлениями стаза эритроцитов в капиллярах, артериолах и венулах. Сывороточная концентрация VEGF-A у крыс контрольной группы была ниже по сравнению с группой крыс, подвергнутых воздействию этанола. Выявлены гендерные различия реакции на этанол, в частности более выраженная экспрессия мРНК HIF-1α и VEGF-A у самок по сравнению с самцами на фоне 4-дневного воздействия этанолом, что коррелировало с содержанием VEGF-А в сыворотке крови. Увеличение длительности алкогольного воздействия до 8 сут сопровождалось ростом экспрессии мРНК VEGF-A как у самок, так и самцов крыс.

Выводы. Воздействие этанола вызывает активацию транскрипционных факторов HIF-1α и VEGF-А кардиомиоцитов крыс, что может быть расценено как механизм срочной адаптации без развития выраженных структурных дезадаптационных перестроек миокарда.

Ключевые слова: VEGF-A, HIF-1α, гипоксия-ассоциированные факторы, воздействие этанола, экспрессия мРНК, алкоголь-индуцированные изменения миокарда.

 

Литература

  1. Лукьянова Л.Д. Современные проблемы адаптации к гипоксии. Сигнальные механизмы и их роль в системной регуляции. Патологическая физиология и экспериментальная терапия. 2011; 1: 3–19.

  2. Серебровская Т.В. Новая стратегия в лечении болезней: гипоксия-индуцируемый фактор. Вестник Международной академии наук. 2006; 1: 29–31.

  3. Солкин А.А., Белявский Н.Н., Кузнецов В.И., Николаева А.Г. Основные механизмы формирования защиты головного мозга при адаптации к гипоксии. Вестник ВГМУ. 2012; 1 (11): 6–14.

  4. Sadaghianloo N., Yamamoto K., Bai H., Tsuneki M., Protack C.D., Hall M.R., Declemy S., Hassen-Khodja R., Madri J., Dardik A. Increased Oxidative Stress and Hypoxia Inducible Factor-1 Expression during Arteriovenous Fistula Maturation. Ann. Vasc. Surg. 2017; 41: 225–234. DOI: 10.1016/j.avsg.2016.09.014.

  5. Серебровская Т.В. Гипоксия-индуцибельный фактор: роль в патофизиологии дыхания. Украинский пульмонологический журнал. 2005; 3: 77–81.

  6. Шустов Е.Б., Каркищенко Н.Н., Дуля М.С., Семенов Х.Х., Оковитый С.В., Радько С.В. Экспрессия гипоксия-индуцибельного фактора НIF1α как критерий развития гипоксии тканей. Биомедицина. 2015; 4: 4–15.

  7. Sun J.Y., Chen X.Y., Wang L., Ye W.X., Shen S.J., Yang J.L., Yao M., Yao D.F. Hypoxia-inducible factor-1α mediates and regulates angiogenesis-related factors expression in hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2020; 28 (11): 942–948. DOI: 10.3760/cma.j.cn501113-20200228-00074.

  8. Morris N.L., Yeligar S.M. Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules. 2018; 8 (4): 170. DOI: 10.3390/biom8040170.

  9. Satishchandran A., Ambade A., Rao S., Hsueh Y.C., Iracheta-Vellve A., Tornai D., Lowe P., Gyongyosi B., Li J., Catalano D., Zhong L., Kodys K., Xie J., Bala S., Gao G., Szabo G. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease. Gastroenterology. 2018; 154 (1): 238–252. DOI: 10.1053/j.gastro.2017.09.022.

  10. Новиков В.Е., Левченкова О.С. Гипоксией индуцированный фактор (HIF-1α) как мишень фармакологического воздействия. Обзоры по клинической фармакологии и лекарственной терапии. 2013; 11 (2): 8–16. DOI: 10.17816/RCF1128-16.

  11. Kouvaras E., Christoni Z., Siasios I., Malizos K., Koukoulis G.K., Ioannou M. Hypoxia-inducible factor 1-alpha and vascular endothelial growth factor in cartilage tumors. Biotech. Histochem. 2019; 94 (4): 283–289. DOI: 10.1080/10520295.2018.1556806.

  12. Zhu Y., Wang Y., Jia Y., Xu J., Chai Y. Roxadustat promotes angiogenesis through HIF-1α/VEGF /VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019; 27 (4): 324–334. DOI: 10.1111/wrr.12708.

  13. Zhao T., Zhao W., Meng W., Liu C., Chen Y., Gerling I.C., Weber K.T., Bhattacharya S.K., Kumar R., Sun Y. VEGF-C/VEGFR-3 pathway promotes myocyte hypertrophy and survival in the infracted myocardium. Am. J. Transl. Res. 2015; 7 (4): 697–709.

  14. Braile M., Marcella S., Cristinziano L., Galdiero M.R., Modestino L., Ferrara A.L., Varricchi G., Marone G., Loffredo S. VEGF-A in Cardiomyocytes and Heart Diseases. Int. J. Mol. Sci. 2020; 21 (15): 5294. DOI: 10.3390/ijms21155294.

  15. Merentie M., Rissanen R., Lottonen-Raikaslehto L., Huusko J., Gurzeler E., Turunen M.P., Holappa L., Makinen P., Yla-Herttuala S. Doxycycline modulates VEGF-A expression: Failure of doxycycline-inducible lentivirus shRNA vector to knockdown VEGF-A expression in transgenic mice. PLoS One. 2018; 13 (1): e0190981. DOI: 10.1371/journal.pone.0190981.

  16. Шодикулова Г.З. Влияние L-аргинина на дисфункцию эндотелия у больных с врожденным пролапсом митрального клапана. Казанский медицинский журнал. 2014; 3 (95): 326–331.

  17. Potente M., Carmeliet P. The Link Between Angiogenesis and Endothelial Metabolism. Annu. Rev. Physiol. 2017; 79: 43–66 DOI: 10.1146/annurev-physiol-021115-105134.

  18. Melincovici C.S., Boşca A.B., Şuşman S., Mărginean M., Mihu C., Istrate M., Moldovan I.M., Roman A.L., Mihu C.M. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018; 59 (2): 455–467.

  19. Pulkkinen H.H., Kiema M., Lappalainen J.P., Toropainen A., Beter M., Tirronen A., Holappa L., Niskanen H., Kaikkonen M.U., Ylä-Herttuala S., Laakkonen J.P. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis. 2021; 24 (1): 129–144. DOI: 10.1007/s10456-020-09748-4.

  20. Gianni-Barrera R., Butschkau A., Uccelli A., Certelli A., Valente P., Bartolomeo M., Groppa E., Burger M.G., Hlushchuk R., Heberer M., Schaefer D.J., Gürke L., Djonov V., Vollmar B., Banfi A. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis. 2018; 21 (4): 883–900. DOI: 10.1007/s10456-018-9634-5.

  21. Radek K.A., Matthies A.M., Burns A.L., Heinrich S.A., Kovacs E.J., Dipietro L.A. Acute ethanol exposure impairs angiogenesis and the proliferative aspects of wound healing. Am. J. Physiol. Heart. Circ. Physiol. 2005; 289: 1084–1090. DOI: 10.1152/ajpheart.00080.2005.

  22. Chen Y., Zhao B., Zhu Y., Zhao H., Ma C. HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis. Am. J. Transl. Res. 2019; 11 (5): 2969–2982.

  23. Гелашвили О.А. Вариант периодизации биологически сходных стадий онтогенеза человека и крысы. Саратовский научно-медицинский журнал. 2008; 4 (22): 125–126.

  24. Ряховский А.Е., Еникеев Д.А., Байков Д.Э., Фаткуллин К.В. Экспериментальное моделирование различных степеней алкогольного опьянения у крыс. Медицинский вестник Башкортостана. 2017; 1 (67): 76–81.

  25. Вторушина Ю.С. Состояние опьянения в системе норм Общей и Особенной частей УК РФ. Сибирский юридический вестник. 2018; 2 (81): 71–75.

  26. António C., Päpke C., Rocha M., Diab H., Limami A.M., Obata T., Fernie A.R., van Dongen J.T. Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiol. 2016; 170 (1): 43–56. DOI: 10.1104/pp.15.00266.

  27. Цибульников С.Ю. Ишемические и реперфузионные повреждения сердца: роль Са-каналов 1-типа и Na+/h+-обменника, анализ экспериментальных и клинических данных. Российский физиологический журнал им. И.М. Сеченова. 2019; 105 (7): 801–811.

  28. Zeriouh M., Sabashnikov A., Tenbrock A., Neef K., Merkle J., Eghbalzadeh K., Weber C., Liakopoulos O.J., Deppe A.C., Stamm C., Cowan D.B., Wahlers T., Choi Y.H. Dysregulation of proangiogeneic factors in pressure-overload left-ventricular hypertrophy results in inadequate capillary growth. Ther. Adv. Cardiovasc. Dis. 2019; 13: 1753944719841795. DOI: 10.1177/1753944719841795.

  29. Xiao Y., Wang T., Song X., Yang D., Chu Q., Kang Y.J. Copper promotion of myocardial regeneration. Exp. Biol. Med. (Maywood). 2020; 245 (10): 911–921. DOI: 10.1177/1535370220911604.

  30. Semenza G.L. Oxygensensing, hypoxia-induciblefactors, and disease pathophysiology. Annu. Rev. Pathol. 2014; 9: 47–71. DOI: 10.1146/annurev-pathol-012513-104720.

  31. Serocki M., Bartoszewska S., Janaszak-Jasiecka A., Ochocka R.J., Collawn J.F., Bartoszewski R. miRNA sregulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis. 2018; 21 (2): 183–202. DOI: 10.1007/s10456-018-9600-2.

  32. Chiu D.K., Tse A.P., Xu I.M., Di Cui J., Lai R.K., Li L.L., Koh H.Y., Tsang F.H., Wei L.L., Wong C.M., Ng I.O., Wong C.C. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 2017; 8 (1): 517. DOI: 10.1038/s41467-017-00530-7.

  33. Балыкин М.В., Сагидова С.А., Жарков А.С., Айзятулова Е.Д., Павлов Д.А., Антипов И.В. Влияние прерывистой гипобарической гипоксии на экспрессию hif-1α и морфофункциональные изменения в миокарде. Ульяновский медико-биологический журнал. 2017; 2: 125–134. DOI: 10.23648/UMBJ. 2017.26.6227.

  34. Zhang D., Lv F.L., Wang G.H. Effects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression. Eur. Rev. Med. Pharmacol. Sci. 2018; 22 (16): 5071–5076. DOI: 10.26355/eurrev_201808_15699.

  35. Fan J., Lv H., Li J., Che Y., Xu B., Tao Z., Jiang W. Roles of Nrf2/HO-1 and HIF-1α/VEGF in lung tissue injury and repair following cerebral ischemia/reperfusion injury. J. Cell. Physiol. 2019; 234 (6): 7695–7707. DOI: 10.1002/jcp.27767.

  36. Xiang Y., Yao X., Wang X., Zhao H., Zou H., Wang L., Zhang Q.X. Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 pathways: in vivo and in vitro. Biosci. Rep. 2019; 39 (10): BSR 20191006. DOI: 10.1042/BSR20191006.

  37. Dopico A.M., Bukiya A.N., Martin G.E. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior. Front. Physiol. 2014; 5: 466. DOI: 10.3389/fphys.2014.00466.

  38. Lukyanova L.D., Sukoyan G.V., Kirova Y.I. Role of proinflammatory factors, nitric oxide, and some parameters of lipid metabolism in the development of immediate adaptation to hypoxia and HIF-1α accumulation. Bull. Exp. Biol. Med. 2013; 154 (5): 597–601. DOI: 10.1007/s10517-013-2008-5.

  39. Rana N.K., Singh P., Koch B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol. Res. 2019; 52 (1): 12. DOI: 10.1186/s40659-019-0221-z.

  40. Rashid M., Zadeh L.R., Baradaran B., Molavi O., Ghesmati Z., Sabzichi M., Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene. 2021; 798: 145796. DOI: 10.1016/j.gene.2021.145796.

  41. Casillas A.L., Chauhan S.S., Toth R.K., Sainz A.G., Clements A.N., Jensen C.C., Langlais P.R., Miranti C.K., Cress A.E., Warfel N.A. Direct phosphorylation and stabilization of HIF-1α by PIM1 kinase drives angiogenesis in solid tumors. Oncogene. 2021; 40 (32): 5142–5152. DOI: 10.1038/s41388-021-01915-1.

  42. Tran J., Magenau A., Rodriguez M., Rentero C., Royo T., Enrich C., Thomas S.R., Grewal T., Gaus K. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells. PLoS One. 2016; 11 (3): e0151556. DOI: 10.1371/journal.pone.0151556.

  43. Luengas-Martinez A., Hardman-Smart J., Rutkowski D., Purba T.S., Paus R., Young H.S. Vascular Endothelial Growth Factor Blockade Induces Dermal Endothelial Cell Apoptosis in a Clinically Relevant Skin Organ Culture Model. Skin Pharmacol. Physiol. 2020; 33 (3): 110–118. DOI: 10.1159/000508344.

  44. Bâ A. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death. Apoptosis. 2017; 22 (6): 741–752. DOI: 10.1007/s10495-017-1372-4.

  45. Cinelli M.A., Do H.T., Miley G.P., Silverman R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev. 2020; 40 (1): 158–189. DOI: 10.1002/med.21599.

  46. Krenz M., Cohen M.V., Downey J.M. Protective and anti-protective effects of acute ethanol exposure in myocardial ischemia/reperfusion. Pathophysiology. 2004; 10 (2): 113–119. DOI: 10.1016/j.pathophys.2003.10.006.

  47. Krylova I.B., Selina E.N., Bulion V.V., Rodionova O.M., Evdokimova N.R., Belosludtseva N.V., Shigaeva M.I., Mironova G.D. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Sci. Rep. 2021; 11 (1): 16999. DOI: 10.1038/s41598-021-96562-7.

 Поступила в редакцию 12.03.2022; принята 13.05.2022.

 

Авторский коллектив

Белогубов Павел Васильевич – аспирант кафедры факультетской терапии, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-8377-1569

Рузов Виктор Иванович – доктор медицинских наук, профессор, заслуженный врач РФ, заведующий кафедрой факультетской терапии, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-7510-3504

Слесарев Сергей Михайлович – доктор биологических наук, доцент, заведующий кафедрой биологии, экологии и природопользования, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-5080-1004

Шарафутдинова Ризида Рафаэлевна – аспирант кафедры факультетской терапии, ассистент кафедры, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-2768-5452

 

Образец цитирования

Белогубов П.В., Рузов В.И., Cлесарев С.М., Шарафутдинова Р.Р. Индуцированная алкоголем экспрессия сосудистого эндотелиального фактора роста и структурные изменения кардиомиоцитов крыс. Ульяновский медико-биологический журнал. 2022; 2: 102–116. DOI: 10.34014/2227-1848-2022-2-102-116.