Download article

DOI 10.34014/2227-1848-2022-2-117-127

USE OF KNOTTIN AS A PSMA-TROPIC PEPTIDE CARRIER

E.A. Beloborodov, E.V. Yurova, E.V. Rastorgueva, E.S. Pogodina, D.E. Sugak, A.N. Fomin, Yu.V. Saenko

Ulyanovsk State University, Ulyanovsk, Russia

 

Prostate cancer is the most common type of cancer in males. Approximately 1.3 million cases of prostate cancer and over 400,000 deaths from the disease are diagnosed annually. The number of deaths is expected to double by 2040. Common methods of prostate cancer treatment have many disadvantages; one of them is the relapse risk. The shortcomings of traditional therapy have led to peptide-receptor radionuclide
therapy.

The aim of the study is to examine binding efficiency of Lu177 labeled knottins containing PSMA-tropic peptide in different domains in vitro and their biodistribution in vivo.

Materials and Methods. We used prostate cancer cell (LNCaP, PC3) and ovarian fibroblast cell (CHO-K1) cultures. The peptides were synthesized using a peptide synthesizer (ResPepSL, Intavis).

We studied peptide stability, their toxicity, binding to cell cultures, and biodistribution on the example of breast adenocarcinoma-bearing BALB/c mice. Chromatographic methods and radiometric techniques were used.

Results. The synthesized peptides with GTIQPYPFSWGY sequence inserted into U5-cytotoxin-Sth1a node are more stable in blood plasma and saline than 177Lu-PSMA-617a, but have a similar degree of binding. Biodistribution studies in BALB/c mice show a higher binding index of the synthesized peptide if compared to 177Lu-PSMA-617.

Conclusion. Modified peptides with a PSMA-tropic peptide inserted into the structure of U5-Sth1a toxin demonstrate high stability both in saline and in blood plasma, as well as good binding to cell cultures and tumors.

Key words: prostate cancer, knottin, spider toxin, radiopharmaceutical, stability, lutetium.

 

References

  1. Sandhu S., Moore C.M., Chiong E., Beltran, H., Bristow R.G., Williams S.G. Prostate cancer. The Lancet. 2021; 398 (10305): 1075–1090.

  2. Litwin M.S., Tan H.-J. The Diagnosis and Treatment of Prostate Cancer. JAMA. 2017; 317 (24): 2532.

  3. Moris L. Benefits and Risks of Primary Treatments for High-risk Localized and Locally Advanced Prostate Cancer: An International Multidisciplinary Systematic Review. European Urology. 2020; 77 (5): 614–627.

  4. Lawrentschuk N., Trottier G., Kuk C., Zlotta A.R. Role of surgery in high-risk localized prostate cancer. Curr. Oncol. 2010; 17 (Suppl. 2): S25–S32.

  5. Picard J.C., Golshayan A.R., Marshall D.T., Opfermann K.J., Keane T.E. The multi-disciplinary management of high-risk prostate cancer. Urol. Oncol. 2012; 30 (1): 3–15.

  6. Mahmoud M., Honood A.R., Mothafr Y., Khaleel H., Yazan E. Primary metastatic prostate cancer between prognosis or adequate/proper medical therapy. World J. Surg. Oncol. 2021; 19 (1): 5.

  7. Koupparis A., Gleave M.E. Multimodal approaches to high-risk prostate cancer. Curr. Oncol. 2010; 17 (Suppl. 2): S33–S37.

  8. Bill-Axelson A. Radical Prostatectomy or Watchful Waiting in Prostate Cancer – 29-Year Follow-up. N. Engl. J. Med. 2018; 379 (24): 2319–2329.

  9. Law A.B., McLaren D.B. Non-surgical treatment for early prostate cancer. J.R. Coll. Physicians Edinb. 2010; 40 (4): 340–342.

  10. Wüstemann T., Haberkorn U., Babich J., Mier W. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy. Medicinal Research Reviews. 2019; 39 (1): 40–69.

  11. Baudino T.A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 2015; 12 (1): 3–20.

  12. Kawakami M., Nakayama J. Enhanced expression of prostate-specific membrane antigen gene in prostate cancer as revealed by in situ hybridization. Cancer Res. 1997; 57 (12): 2321–2324.

  13. Dmitrieva M.D., Voitova A.A., Dymova M.A., Richter V.A., Kuligina E.V. Tumor-Targeting Peptides Search Strategy for the Delivery of Therapeutic and Diagnostic Molecules to Tumor Cells. International journal of molecular sciences. 2020; 22 (1): 314.

  14. Moore S.J., Leung C.L., Norton H.K., Cochran J.R. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PloS One. 2013; 8 (4): e60498.

  15. Kolmar H. Natural and Engineered Cystine Knot Miniproteins for Diagnostic and Therapeutic Applications. Current Pharmaceutical Design. 2011; 17 (38): 4329–4336.

  16. Ackerman S.E., Currier N.V., Bergen J.M., Cochran J.R. Cystine-knot peptides: emerging tools for cancer imaging and therapy. Expert Review of Proteomics. 2014; 11 (5): 561–572.

  17. Kun C., Wei J. Патент US № US20170240596A1; 2019.

  18. Liu F., Zhu H., Yu J., Han X., Xie Q., Liu T., Xia C., Li N., Yang Z. 68Ga/177Lu-labeled DOTA-TATE shows similar imaging and biodistribution in neuroendocrine tumor model. Tumor Biology. 2017; 39 (6).

  19. Pujatti P.B. Development of a novel bombesin analog radiolabeled with Lutetium-177: in vivo evaluation of the biological properties in Balb-C mice. Cellular and molecular biology. 2010; 56 (2): 18–24.

  20. Cui C., Hanyu M., Hatori A., Zhang Y., Xie L., Ohya T., Fukada M., Suzuki H., Nagatsu K., Jiang C., Luo R., Shao G., Zhang M., Wang F. Synthesis and evaluation of [64Cu] PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer. Am. J. Nucl. Med. Mol. Imaging. 2017; 7 (2): 40–52.

  21. Sharifi M., Jalilian A., Yousefnia H., Alirezapour B., Bahrami-Samani A., Zolghadri S. Production, quality control, biodistribution and imaging studies of 177Lu-PSMA-617 in breast adenocarcinoma model. Radiochimica Acta. 2018; 106 (6): 507–513.

 Received 29 March 2022; accepted 22 April 2022.

 

Information about the authors

Beloborodov Evgeniy Alekseevich, Post-graduate Student, Junior Researcher, S.P. Kapitsa Technology Research Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-5666-5154

Yurova Elena Valer'evna, Post-graduate Student, Junior Researcher, S.P. Kapitsa Technology Research Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0001-7484-2671

Rastorgueva Evgeniya Vladimirovna, Senior Lecturer, Chair of General and Clinical Pharmacology with a Course in Microbiology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-1518-4677

Pogodina Evgeniya Sergeevna, Candidate of Sciences (Biology), Researcher, S.P. Kapitsa Technology Research Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-8183-5103

Sugak Dmitriy Evgen'evich, Research Engineer, S.P. Kapitsa Technology Research Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-3276-8976

Fomin Aleksandr Nikolaevich, Candidate of Sciences (Technical Sciences), Senior Researcher, S.P. Kapitsa Technology Research Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-0826-1857

Saenko Yuriy Vladimirovich, Doctor of Sciences (Biology), Professor, Leading Researcher, S.P. Kapitsa Technology Research Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-4402-1482

 

For citation

Beloborodov E.A., Yurova E.V., Rastorgueva E.V., Pogodina E.S., Sugak D.E., Fomin A.N., Saenko Yu.V. Ispol'zovanie knottina kak nositelya peptida, tropnogo PSMA [Use of knottin as a PSMA-tropic peptide carrier]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2022; 2: 117–127. DOI: 10.34014/2227-1848-2022-2-117-127 (in Russian).

 

Скачать статью

УДК 616-006,615.849

DOI 10.34014/2227-1848-2022-2-117-127

ИСПОЛЬЗОВАНИЕ КНОТТИНА КАК НОСИТЕЛЯ ПЕПТИДА, ТРОПНОГО ПСМА

Е.А. Белобородов, Е.В. Юрова, Е.В. Расторгуева, Е.С. Погодина, Д.Е. Сугак, А.Н. Фомин, Ю.В. Саенко

ФГБОУ ВО «Ульяновский государственный университет», г. Ульяновск, Россия

 

Рак предстательной железы является наиболее распространенным типом рака у мужчин. Ежегодно диагностируется около 1,3 млн случаев рака предстательной железы и более 400 тыс. смертей от данного заболевания и ожидается, что к 2040 г. это число удвоится. Классические методы лечения рака предстательной железы имеют множество недостатков, к которым относят также риск рецидива. Недостатки традиционной терапии привели к появлению таргетной радионуклидной терапии с использованием пептидов.

Цель. Изучение эффективности связывания меченных Lu177 кноттинов, содержащих тропный ПСМА пептид в разных доменах, in vitro и их биораспределения in vivo.

Материалы и методы. В работе использовались культуры клеток рака предстательной железы LNCaP, PC3, а также культура фибробластных клеток яичника CHO-K1. Синтез пептидов осуществлялся на пептидном синтезаторе ResPepSL (Intavis). Изучалась стабильность пептидов, их токсичность и связываемость с клеточными культурами, биораспределение на примере мышей BALB/c с привитыми клетками аденокарциномы молочной железы. Использовались методы хроматографии и радиометрии.

Результаты. Синтезированные пептиды, содержащие последовательность GTIQPYPFSWGY, встроенную в узел U5-цитотоксин-Sth1a, более стабильны в плазме крови и физиологическом растворе, чем радиофармацевтический препарат 177Lu-PSMA-617а, но имеют аналогичную с ним степень связывания. Исследования биораспределения у мышей BALB/c демонстрируют более высокий индекс связывания синтезированного пептида по сравнению с 177Lu-PSMA-617.

Выводы. Модифицированные пептиды с пептидом, тропным к антигену PSMA, вставленным в структуру токсина U5-Sth1a, демонстрируют высокую стабильность как в физиологическом растворе, так и в плазме крови, хорошее связывание как с клеточными культурами, так и с опухолями в организме.

Ключевые слова: рак предстательной железы, кноттин, токсин пауков, радиофармпрепарат, стабильность, лютеций.

 

Литература

  1. Sandhu S., Moore C.M., Chiong E., Beltran, H., Bristow R.G., Williams S.G. Prostate cancer. The Lancet. 2021; 398 (10305): 1075–1090.

  2. Litwin M.S., Tan H.-J. The Diagnosis and Treatment of Prostate Cancer. JAMA. 2017; 317 (24): 2532.

  3. Moris L. Benefits and Risks of Primary Treatments for High-risk Localized and Locally Advanced Prostate Cancer: An International Multidisciplinary Systematic Review. European Urology. 2020; 77 (5): 614–627.

  4. Lawrentschuk N., Trottier G., Kuk C., Zlotta A.R. Role of surgery in high-risk localized prostate cancer. Curr. Oncol. 2010; 17 (Suppl. 2): S25–S32.

  5. Picard J.C., Golshayan A.R., Marshall D.T., Opfermann K.J., Keane T.E. The multi-disciplinary management of high-risk prostate cancer. Urol. Oncol. 2012; 30 (1): 3–15.

  6. Mahmoud M., Honood A.R., Mothafr Y., Khaleel H., Yazan E. Primary metastatic prostate cancer between prognosis or adequate/proper medical therapy. World J. Surg. Oncol. 2021; 19 (1): 5.

  7. Koupparis A., Gleave M.E. Multimodal approaches to high-risk prostate cancer. Curr. Oncol. 2010; 17 (Suppl. 2): S33–S37.

  8. Bill-Axelson A. Radical Prostatectomy or Watchful Waiting in Prostate Cancer – 29-Year Follow-up. N. Engl. J. Med. 2018; 379 (24): 2319–2329.

  9. Law A.B., McLaren D.B. Non-surgical treatment for early prostate cancer. J.R. Coll. Physicians Edinb. 2010; 40 (4): 340–342.

  10. Wüstemann T., Haberkorn U., Babich J., Mier W. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy. Medicinal Research Reviews. 2019; 39 (1): 40–69.

  11. Baudino T.A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol. 2015; 12 (1): 3–20.

  12. Kawakami M., Nakayama J. Enhanced expression of prostate-specific membrane antigen gene in prostate cancer as revealed by in situ hybridization. Cancer Res. 1997; 57 (12): 2321–2324.

  13. Dmitrieva M.D., Voitova A.A., Dymova M.A., Richter V.A., Kuligina E.V. Tumor-Targeting Peptides Search Strategy for the Delivery of Therapeutic and Diagnostic Molecules to Tumor Cells. International journal of molecular sciences. 2020; 22 (1): 314.

  14. Moore S.J., Leung C.L., Norton H.K., Cochran J.R. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PloS One. 2013; 8 (4): e60498.

  15. Kolmar H. Natural and Engineered Cystine Knot Miniproteins for Diagnostic and Therapeutic Applications. Current Pharmaceutical Design. 2011; 17 (38): 4329–4336.

  16. Ackerman S.E., Currier N.V., Bergen J.M., Cochran J.R. Cystine-knot peptides: emerging tools for cancer imaging and therapy. Expert Review of Proteomics. 2014; 11 (5): 561–572.

  17. Kun C., Wei J. Патент US № US20170240596A1; 2019.

  18. Liu F., Zhu H., Yu J., Han X., Xie Q., Liu T., Xia C., Li N., Yang Z. 68Ga/177Lu-labeled DOTA-TATE shows similar imaging and biodistribution in neuroendocrine tumor model. Tumor Biology. 2017; 39 (6).

  19. Pujatti P.B. Development of a novel bombesin analog radiolabeled with Lutetium-177: in vivo evaluation of the biological properties in Balb-C mice. Cellular and molecular biology. 2010; 56 (2): 18–24.

  20. Cui C., Hanyu M., Hatori A., Zhang Y., Xie L., Ohya T., Fukada M., Suzuki H., Nagatsu K., Jiang C., Luo R., Shao G., Zhang M., Wang F. Synthesis and evaluation of [64Cu] PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer. Am. J. Nucl. Med. Mol. Imaging. 2017; 7 (2): 40–52.

  21. Sharifi M., Jalilian A., Yousefnia H., Alirezapour B., Bahrami-Samani A., Zolghadri S. Production, quality control, biodistribution and imaging studies of 177Lu-PSMA-617 in breast adenocarcinoma model. Radiochimica Acta. 2018; 106 (6): 507–513.

 Поступила в редакцию 29.03.2022; принята 22.04.2022.

 

Авторский коллектив

Белобородов Евгений Алексеевич – аспирант, младший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-5666-5154

Юрова Елена Валерьевна – аспирант, младший научный сотрудник НИТИ им. С.П. Капицы,
ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: http://orcid.org/0000-0001-7484-2671

Расторгуева Евгения Владимировна – старший преподаватель кафедры общей и клинической фармакологии c курсом микробиологии, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-1518-4677

Погодина Евгения Сергеевна – кандидат биологических наук, научный сотрудник НИТИ
им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-8183-5103.

Сугак Дмитрий Евгеньевич – инженер-исследователь НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-3276-8976.

Фомин Александр Николаевич – кандидат технических наук, старший научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-0826-1857

Саенко Юрий Владимирович – доктор биологических наук, профессор, ведущий научный сотрудник НИТИ им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-4402-1482.

 

Образец цитирования

Белобородов Е.А., Юрова Е.В., Расторгуева Е.В., Погодина Е.С., Сугак Д.Е., Фомин А.Н., Саенко Ю.В. Использование кноттина как носителя пептида, тропного ПСМА. Ульяновский медико-биологический журнал. 2022; 2: 117–127. DOI: 10.34014/2227-1848-2022-2-117-127.