Download article

DOI 10.34014/2227-1848-2022-4-49-57

ACUTE KIDNEY INJURY IN COVID-19 PATIENTS

E.R. Sakaeva, A.M. Shutov, E.V. Efremova, I.O. Popondopolo

Ulyanovsk State University, Ulyanovsk, Russia

Acute kidney injury (AKI) often complicates the progression of COVID-19 and increases in-hospital mortality.

The aim of the study is to analyze AKI frequency, the time of its development and the possibility of using the ratio blood urea nitrogen/blood creatinine (BUN/Cr) as a biomarker for AKI progression in COVID-19 patients.

Materials and methods. The authors examined 329 patients hospitalized with COVID-19 (157 women (47.7 %) and 172 men (52.3 %), mean age 58.0±14.3 years). The follow-up period was 12 months. COVID-19 was confirmed by a PCR test. AKI frequency, severity and time of development were studied in all patients. Moreover, the authors calculated the ratio blood urea nitrogen/blood creatinine (BUN/Cr, mg/dl:mg/dl).

Results. AKI was diagnosed in 70 patients (21.3 %), including 12 patients (17.1 %) with an increase in creatinine level after hospitalization (in-hospital AKI) and 58 patients (82.9 %) with a high creatinine level (pre-hospital AKI). AKI stage 1 was observed in 55 patients (78.6 %), stage 2 – in 11 patients (15.7 %), stage 3 – in 4 patients (5.7 %). In-hospital mortality in COVID-19 patients with AKI was 10 %, the relative mortality risk in COVID-19 patients with AKI was 5.3 (95 %, CI 1.7–16.1; p=0.01). In patients hospitalized with AKI, AUB/Cr>20 was observed on hospitalization in 16 patients (27.6 %). In patients with in-hospital AKI, AUB/Cr>20 was detected only in 1 person (8 %).

Conclusion. One in four patients hospitalized with COVID-19 develop AKI, predominantly stage 1. AKI increases in-hospital mortality. In most patients, AKI develops before hospitalization. In 27.6 % of patients with pre-hospital AKI, AUB/Cr>20 on hospitalization, which indicates the prerenal nature of AKI and the importance of dehydration (hypovolemia) as a risk factor for AKI progression in COVID-19 patients.

Key words: acute kidney injury, COVID-19, blood urea nitrogen/blood creatinine ratio (BUN/Cr), hypovolemia.

 

References

  1. Chan L., Coca S.G. Acute Kidney Injury in the Time of COVID-19. Kidney 360. 2020; 1 (7): 588–590. DOI: 10.34067/KID.0003722020.

  2. Chawla L.S., Eggers P.W., Star R.A., Kimmel P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014; 371 (1): 58–66. DOI: 10.1056/NEJMra1214243. PMID: 24988558.

  3. Srisawat N., Hoste E.E., Kellum J.A. Modern classification of acute kidney injury. Blood Purif. 2010; 29 (3): 300–307.

  4. Alekseeva E.I., Tepaev R.F., Shil'krot I.Yu., Dvoryakovskaya T.M., Surkov A.G., Kriulin I.A. COVID-19-indutsirovannyy «tsitokinovyy shtorm» – osobaya forma sindroma aktivatsii makrofagov [COVID-19-induced “cytokine storm” as a special form of macrophage activation syndrome]. Vestnik RAMN. 2021; 76 (1): 51–66. DOI: https://doi.org/10.15690/vramn1410 (in Russian).

  5. Vremennye metodicheskie rekomendatsii «Profilaktika, diagnostika i lechenie novoy koronavirusnoy infektsii (COVID-19)» [Interim guidelines “Prevention, diagnosis and treatment of a new coronavirus infection (COVID-19)”]. Versiya 14. Available at: https://xn--80aesfpebagmfblc0a.xn--p1ai/ai/doc/1213/attach/vmr_COVID-19_V14_27-12-2021.pdf (accessed: December 27, 2021) (in Russian).

  6. Mohamed M.M.B., Velez J.C.Q. Proteinuria in COVID-19. Clin Kidney J. 2021; 14 (Suppl. 1): i40–i47. DOI: 10.1093/ckj/sfab036.

  7. Qureshi A.I., Baskett W.I., Huang W. Acute Ischemic Stroke and COVID-19: An Analysis of 27 676 Pa­tients. Stroke. 2021; 52 (3): 905–912. DOI: 10.1161/STROKEAHA.120.031786.

  8. Rahman M., Shad F., Smith M.C. Acute kidney injury: a guide to diagnosis and management. Am Fam Physician. 2012; 86 (7): 631–639.

  9. Lameire N., Van Massenhove J., Van Biesen W. What is the difference between prerenal and renal acute kidney injury? Acta Clin Belg. 2012; 67 (5): 309–314. DOI: 10.2143/ACB.67.5.2062681.

  10. Maioli M., Toso A., Leoncini M., Musilli N. Pre-procedural bioimpedance vectorial analysis of fluid status and prediction of contrast-induced acute kidney injury. J Am Coll Cardiol. 2014; 63: 1387–1394.

  11. Mehta R.L. International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. The Lancet. 2015; 385: 2616–2643.

  12. Smirnov A.V., Dobronravov V.A., Rumyantsev A.Sh., Kayukov I.G. Ostroe povrezhdenie pochek [Acute kidney injury]. Moscow: MIA; 2015 (in Russian).

  13. Manoeuvrier G., Bach-Ngohou K., Batard E., Masson D., Trewick D. Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC Nephrol. 2017; 18 (1): 173. DOI: 10.1186/s12882-017-0591-9.

  14. KDIGO Clinical Practice Guideline for Acute Kidney Injury / Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. Kidney inter. 2012; 2: 1–138.

  15. Klinicheskie rekomendatsii. Ostroe povrezhdenie pochek, 2020 [Clinical guidelines. Acute kidney injury, 2020]. Available at: https://www.rusnephrology.org/wp-content/uploads/2020/12/AKI_final.pdf (accessed: Aрril 16, 2022) (in Russian).

  16. Bellomo R., Goldsmith D. The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin Kidney J. 2012; 5 (2): 187–191. DOI: 10.1093/ckj/sfs013.

  17. Gabarre P. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 2020; 46 (7): 1339–1348.

  18. Hoste E.A.J., Kellum J.A., Selby N.M. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018; 14 (10): 607–625. DOI: 10.1038/s41581-018-0052-0.

  19. Armando J.M-R., Rigoberto D.Á., Méndez-Pérez R.A. Community- and Hospital-Acquired Acute Kidney Injury in COVID-19: Different Phenotypes and Dismal Prognosis. Blood Purif. 2021; 50 (6): 931–941. DOI: 10.1159/000513948.

  20. Violi F., Cangemi R., Romiti G.F., Ceccarelli G. Is Albumin Predictor of Mortality in COVID-19? Antioxid Redox Signal. 2021; 35 (2): 139–142. DOI: 10.1089/ars.2020.8142.

  21. Tarragón B., Valdenebro M., Serrano M.L. Acute kidney failure in patients admitted due to COVID-19. Nefrologia (Engl Ed). 2021; 41 (1): 34–40. DOI: 10.1016/j.nefro.2020.08.005.

  22. Pelayo J., Bryan Lo K., Bhargav R. Clinical Characteristics and Outcomes of Community- and Hospital-Acquired Acute Kidney Injury with COVID-19 in a US Inner City Hospital System. Cardiorenal Med. 2020; 10 (4): 223–231. DOI: 10.1159/000509182.

  23. Maioli M., Toso A., Leoncini M., Musilli N. Pre-procedural bioimpedance vectorial analysis of fluid status and prediction of contrast-induced acute kidney injury. J Am Coll Cardiol. 2014; 63: 1387–1394.

  24. Tzoulis P., Waung J.A., Bagkeris E., Hussein Z. Dysnatremia is a Predictor for Morbidity and Mortality in Hospitalized Patients with COVID-19. J Clin Endocrinol Metab. 2021; 106 (6): 1637–1648. DOI: 10.1210/clinem/dgab107.

  25. Lin L., Wang X., Ren J., Sun Y., Yu R., Li K., Zheng L., Yang J. Risk factors and prognosis for COVID-19-induced acute kidney injury: a meta-analysis. BMJ Open. 2020; 10 (11): e042573. DOI: 10.1136/bmjopen-2020-042573.

Received 15 July 2022; accepted 03 October 2022.

 

Information about the authors

Sakaeva El'vira Raisovna, Teaching Assistant, Chair of Therapy and Occupational Diseases, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-1646-3213.

Shutov Aleksandr Mikhaylovich, Doctor of Sciences (Medicine), Professor, Chair of Therapy and Occupational Diseases, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-1213-8600.

Efremova Elena Vladimirovna, Doctor of Sciences (Medicine), Associate Professor, Chair of Therapy and Occupational Diseases, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-7579-4824.

Popondopolo Irina Olegovna, Student, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-2743-3394.

 

For citation

Sakaeva E.R., Shutov A.M., Efremova E.V., Popondopolo I.O. Ostroe povrezhdenie pochek u patsientov s SOVID-19 [Acute kidney injury in COVID-19 patients]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2022; 4: 49–57. DOI: 10.34014/2227-1848-2022-4-49-57 (in Russian).

 

Скачать статью

УДК 616.61-002.17

DOI 10.34014/2227-1848-2022-4-49-57

ОСТРОЕ ПОВРЕЖДЕНИЕ ПОЧЕК У ПАЦИЕНТОВ С СOVID-19

Э.Р. Сакаева, А.М. Шутов, Е.В. Ефремова, И.О. Попондополо

ФГБОУ ВО «Ульяновский государственный университет», г. Ульяновск, Россия

 

Острое повреждение почек (ОПП) нередко осложняет течение COVID-19, повышает внутрибольничную летальность.

Цель – изучить частоту ОПП, время его развития и возможность использования отношения азота мочевины крови к креатинину крови (АМК/Кр) как биомаркера развития острого повреждения почек при COVID-19.

Материалы и методы. Обследовано 329 пациентов, поступивших в стационар с COVID-19. Женщин было 157 (47,7 %), мужчин – 172 (52,3 %). Средний возраст составил 58,0±14,3 года, период наблюдения – 12 мес. Диагноз COVID-19 подтвержден ПЦР-тестом. У всех больных изучена частота, тяжесть и время развития ОПП, рассчитано отношение азота мочевины крови к креатинину крови (АМК/Кр, мг/дл:мг/дл).

Результаты. ОПП диагностировано у 70 (21,3 %) больных, из них у 12 (17,1 %) чел. повышение уровня креатинина наблюдалось во время лечения в стационаре – внутрибольничное ОПП, у 58 (82,9 %) – уже при госпитализации – внебольничное ОПП. ОПП 1-й стадии имело место у 55 (78,6 %) больных, 2-й стадии – у 11 (15,7 %), 3-й стадии – у 4 (5,7 %) больных. Внутрибольничная летальность у больных COVID-19 с ОПП составила 10 %, относительный риск смерти у больных COVID-19 при наличии ОПП – 5,3 (95 % ДИ 1,7–16,1, р=0,01). При внебольничномОПП АМК/Кр>20 в день госпитализации наблюдалось у 16 (27,6 %) чел. При внутрибольничном ОПП АМК/Кр>20 выявлено только у 1 (8 %) чел.

Выводы. У каждого четвертого госпитализированного больного с COVID-19 развивается ОПП преимущественно 1-й стадии. Острое повреждение почек повышает внутрибольничную летальность. У большинства больных ОПП развивается еще на догоспитальном этапе лечения. У 27,6 % пациентов с внебольничным ОПП АМК/Кр в день госпитализации составляет более 20, что может свидетельствовать о преренальном характере ОПП и значимости дегидратации (гиповолемии) как фактора риска развития ОПП при COVID-19.

Ключевые слова: острое повреждение почек, COVID-19, отношение азота мочевины крови к креатинину крови (АМК/Кр), гиповолемия.

 

Литература

  1. Chan L., Coca S.G. Acute Kidney Injury in the Time of COVID-19. Kidney 360. 2020; 1 (7): 588–590. DOI: 10.34067/KID.0003722020.

  2. Chawla L.S., Eggers P.W., Star R.A., Kimmel P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014; 371 (1): 58–66. DOI: 10.1056/NEJMra1214243. PMID: 24988558.

  3. Srisawat N., Hoste E.E., Kellum J.A. Modern classification of acute kidney injury. Blood Purif. 2010; 29 (3): 300–307.

  4. Алексеева Е.И., Тепаев Р.Ф., Шилькрот И.Ю., Дворяковская Т.М., Сурков А.Г., Криулин И.А. COVID-19-индуцированный «цитокиновый шторм» – особая форма синдрома активации макрофагов. Вестник РАМН. 2021; 76 (1): 51–66. DOI: https://doi.org/10.15690/vramn1410.

  5. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 14. URL: https://xn--80aesfpebagmfblc0a.xn--p1ai/ai/doc

    /1213/attach/vmr_COVID-19_V14_27-12-2021.pdf (дата обращения: 27.12.2021).

  6. Mohamed M.M.B., Velez J.C.Q. Proteinuria in COVID-19. Clin Kidney J. 2021; 14 (Suppl. 1): i40–i47. DOI: 10.1093/ckj/sfab036.

  7. Qureshi A.I., Baskett W.I., Huang W. Acute Ischemic Stroke and COVID-19: An Analysis of 27 676 Pa­tients. Stroke. 2021; 52 (3): 905–912. DOI: 10.1161/STROKEAHA.120.031786.

  8. Rahman M., Shad F., Smith M.C. Acute kidney injury: a guide to diagnosis and management. Am Fam Physician. 2012; 86 (7): 631–639.

  9. Lameire N., Van Massenhove J., Van Biesen W. What is the difference between prerenal and renal acute kidney injury? Acta Clin Belg. 2012; 67 (5): 309–314. DOI: 10.2143/ACB.67.5.2062681.

  10. Maioli M., Toso A., Leoncini M., Musilli N. Pre-procedural bioimpedance vectorial analysis of fluid status and prediction of contrast-induced acute kidney injury. J Am Coll Cardiol. 2014; 63: 1387–1394.

  11. Mehta R.L. International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. The Lancet. 2015; 385: 2616–2643.

  12. Смирнов А.В., Добронравов В.А., Румянцев А.Ш., Каюков И.Г. Острое повреждение почек. Москва: МИА; 2015.

  13. Manoeuvrier G., Bach-Ngohou K., Batard E., Masson D., Trewick D. Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC Nephrol. 2017; 18 (1): 173. DOI: 10.1186/s12882-017-0591-9.

  14. KDIGO Clinical Practice Guideline for Acute Kidney Injury / Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. Kidney inter. 2012; 2: 1–138.

  15. Клинические рекомендации. Острое повреждение почек, 2020. URL: https://www.rusnephrology.org/wp-content/uploads/2020/12/AKI_final.pdf (дата обращения: 16.04.2022).

  16. Bellomo R., Goldsmith D. The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin Kidney J. 2012; 5 (2): 187–191. DOI: 10.1093/ckj/sfs013.

  17. Gabarre P. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 2020; 46 (7): 1339–1348.

  18. Hoste E.A.J., Kellum J.A., Selby N.M. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018; 14 (10): 607–625. DOI: 10.1038/s41581-018-0052-0.

  19. Armando J.M-R., Rigoberto D.Á., Méndez-Pérez R.A. Community- and Hospital-Acquired Acute Kidney Injury in COVID-19: Different Phenotypes and Dismal Prognosis. Blood Purif. 2021; 50 (6): 931–941. DOI: 10.1159/000513948. 

  20. Violi F., Cangemi R., Romiti G.F., Ceccarelli G. Is Albumin Predictor of Mortality in COVID-19? Antioxid Redox Signal. 2021; 35 (2): 139–142. DOI: 10.1089/ars.2020.8142.

  21. Tarragón B., Valdenebro M., Serrano M.L. Acute kidney failure in patients admitted due to COVID-19. Nefrologia (Engl Ed). 2021; 41 (1): 34–40. DOI: 10.1016/j.nefro.2020.08.005.

  22. Pelayo J., Bryan Lo K., Bhargav R. Clinical Characteristics and Outcomes of Community- and Hospital-Acquired Acute Kidney Injury with COVID-19 in a US Inner City Hospital System. Cardiorenal Med. 2020; 10 (4): 223–231. DOI: 10.1159/000509182.

  23. Maioli M., Toso A., Leoncini M., Musilli N. Pre-procedural bioimpedance vectorial analysis of fluid status and prediction of contrast-induced acute kidney injury. J Am Coll Cardiol. 2014; 63: 1387–1394.

  24. Tzoulis P., Waung J.A., Bagkeris E., Hussein Z. Dysnatremia is a Predictor for Morbidity and Mortality in Hospitalized Patients with COVID-19. J Clin Endocrinol Metab. 2021; 106 (6): 1637–1648. DOI: 10.1210/clinem/dgab107.

  25. Lin L., Wang X., Ren J., Sun Y., Yu R., Li K., Zheng L., Yang J. Risk factors and prognosis for COVID-19-induced acute kidney injury: a meta-analysis. BMJ Open. 2020; 10 (11): e042573. DOI: 10.1136/bmjopen-2020-042573.

Поступила в редакцию 15.07.2022; принята 03.10.2022.

 

Авторский коллектив

Сакаева Эльвира Раисовна – ассистент кафедры терапии и профессиональных болезней, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-1646-3213.

Шутов Александр Михайлович – доктор медицинских наук, профессор кафедры терапии и профессиональных болезней, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-1213-8600.

Ефремова Елена Владимировна – доктор медицинских наук, доцент кафедры терапии и профессиональных болезней, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-7579-4824.

Попондополо Ирина Олеговна – студентка, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-2743-3394.

 

Образец цитирования

Сакаева Э.Р., Шутов А.М., Ефремова Е.В., Попондополо И.О. Острое повреждение почек у пациентов с СOVID-19. Ульяновский медико-биологический журнал. 2022; 4: 49–57. DOI: 10.34014/2227-1848-2022-4-49-57.