Download aricle

DOI 10.34014/2227-1848-2022-4-93-108

LASER ADJUVANTS: KEY FEATURES AND SPECIFICITY

R.Sh. Zayneeva, A.K. Gil'mutdinova, I.O. Zolotovskiy, A.V. Khokhlova, V.A. Ribenek, T.P. Gening

Ulyanovsk State University, Ulyanovsk, Russia

 

Increasing the vaccine effectiveness and the search for new adjuvants that directly influence immunocompetent cells and stimulate the development of a pronounced adaptive immune response remain significant problems for modern medicine. Currently, aluminum salts and other chemicals with certain side effects are used as adjuvants. Therefore, it is relevant to search for other methods to increase vaccine effectiveness while reducing its toxic effect on the patients. One of such methods is laser irradiation of the injection sites, which, among other things, makes it possible to reduce vaccine amount.

The purpose of this review is to analyze publications on the use of laser to stimulate the immune response. Four different classes of lasers are known to systemically enhance the immune response to intradermal vaccination: pulsed lasers, continuous mode lasers, non-ablative fractional lasers, and ablative fractional lasers. Each laser vaccine adjuvant is characterized by radiation parameters, modes of action, and immunological adjuvant effects that differ significantly. The authors consider main classes of lasers used as immunological adjuvants. The specificity of each laser will help to choose the most effective option to achieve the clinical goal when using a particular vaccine.

Key words: laser adjuvant, pulsed lasers, continuous lasers, non-ablative fractional lasers, ablative fractional lasers, intradermal vaccination.

 

References

  1. Schijns V.E., Lavelle E.C. Trends in vaccine adjuvants. Expert Rev Vaccines. 2011; 10 (4): 539–550. DOI: 10.1586/erv.11.21.

  2. Moskvin S.V., Achilov A.A. Lazernaya terapiya apparatami «Matriks» [Laser therapy with Matrix devices]. Moscow; Tver': OOO «Izdatel'stvo «Triada»; 2009. 152 (in Russian).

  3. Tsen S.W., Wu T.C., Kiang J.G., Tsen K.T. Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation. J. Biomed Sci. 2012; 19 (1): 62. DOI: 10.1186/1423-0127-19-62.

  4. Abdrakhmanova A.I., Amirov N.B. Sovremennye predstavleniya o mekhanizmakh lazernogo vozdeystviya [Modern concepts on the mechanisms of low level laser therapy]. Vestnik sovremennoy klinicheskoy meditsiny. 2015; 8 (5): 7–12 (in Russian).

  5. Kashiwagi S. Laser adjuvant for vaccination. FASEB J. 2020; 34 (3): 3485–3500. DOI: 10.1096/fj.201902164R.

  6. Maki Y., Kashiwagi S., Kimizuka Y. Laser vaccine adjuvants: Light-augmented immune responses. Vaccine. 2021; 39 (46): 6805–6812. DOI: 10.1016/j.vaccine.2021.09.042.

  7. Martins K.A.O., Cooper C.L., Stronsky S.M., Norris S.L.W., Kwilas S.A., Steffens J.T., Benko J.G., van Tongeren S.A., Bavari S. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity. EBioMedicine. 2015; 3: 67–78. DOI: 10.1016/j.ebiom.2015.11.041.

  8. Sticchi L., Alberti M., Alicino C., Crovari P. The intradermal vaccination: past experiences and current perspectives. Prev Med Hyg. 2010; 51 (1): 7–14.

  9. Scheiblhofer S., Drothler S., Braun W., Braun R., Boesch M., Weiss R. Laser facilitated epicutaneous peptide immunization using dry patch technology. Vaccine. 2021; 39 (37): 5259–5264. DOI: 10.1016/j.vaccine.2021.07.083.

  10. Li Z., Cao Y., Li Y., Zhao Y., Chen X. Vaccine delivery alerts innate immune systems for more immunogenic vaccination. JCI Insight. 2021; 6 (7). DOI: 10.1172/jci.insight.144627.

  11. Kashiwagi S., Brauns T., Poznansky M.C. Classification of Laser Vaccine Adjuvants. J. Vaccines Vaccin. 2016; 7 (1): 307. DOI: 10.4172/2157-7560.1000307.

  12. Nivorozhkin A. Laser Vaccine Adjuvants: Corona Virus, Influenza and Beyond. Pharma Focus Asia. 2020. Available at: https://www.pharmafocusasia.com/articles/laser-vaccine-adjuvants (accessed: May 24, 2022).

  13. Goff P.H., Hayashi T., He W., Yao S., Cottam H.B., Tan G.S., Crain B., Krammer F., Messer K., Pu M., Carson D.A., Palese P., Corr M. Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands Work Additively via MyD88 To Induce Protective Antiviral Immunity in Mice. J. Virol. 2017; 91 (19). DOI: 10.1128/JVI.01050-17.

  14. Garvie-Cook H., Stone J.M., Yu F., Guy R.H., Gordeev S.N. Femtosecond pulsed laser ablation to enhance drug delivery across the skin. J. Biophotonics. 2016; 9 (1-2): 144–154. DOI: 10.1002/jbio.201500120.

  15. Kroemer G., Galluzzi L., Kepp O., Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013; 31: 51–72. DOI: 10.1146/annurev-immunol-032712-100008.

  16. Huang C.M. Topical vaccination: the skin as a unique portal to adaptive immune responses. Semin Immunopathol. 2007; 29 (1): 71–80. DOI: 10.1007/s00281-007-0059-2.

  17. Onikienko S.B., Zemlyanoy A.V., Tarasov V.A. Patent № 2345788; 2009 (in Russian).

  18. Onikienko S.B., Zemlyanoi A.V., Margulis B.A., Guzhova I.V., Pimenova A.A. Laser-based vaccine adjuvants: Patent № 10052376 US.

  19. Onikienko S.B., Zemlyanoy A.B., Margulis B.A. Diagnostics and correction of the metabolic and immune disorders. Interactions of bacterial endotoxins and lipophilic xenobiotics with receptors associated with innate immunity. Donosologiya (St. Petersburg). 2007; 1: 32–54.

  20. Kashiwagi S., Yuan J., Forbes B., Hibert M., Lee E.L.Q., Whicher L., Goudie C., Yang Y., Chen T., Edelblute B., Collette B., Edinghton L., Trussler J., Nezivar J., Leblanc P., Bronson R., Tsukada K., Suematsu M., Dover J., Poznansky M. Near-infrared laser adjuvant for influenza vaccine. PLoS One. 2013; 8 (12). DOI: 10.1371/journal.pone.0082899.

  21. Chen X., Kim P., Farinelli B., Doukas A., Yun S.H., Gelfand J.A., Anderson R.R., Wu M.X. A novel laser vaccine adjuvant increases the motility of antigen presenting cells. PLoS One. 2010; 5 (10): 13776. DOI: 10.1371/journal.pone.0013776.

  22. Chen X., Pravetoni M., Bhayana B., Pentel P.R., Wu M.X. High immunogenicity of nicotine vaccines obtained by intradermal delivery with safe adjuvants. Vaccine. 2012; 31 (1): 159–164. DOI: 10.1016/j.vaccine.2012.10.069.

  23. Kashiwagi S., Brauns T., Gelfand J., Poznansky M.C. Laser vaccine adjuvants. History, progress, and potential. Hum Vaccin Immunother. 2014; 10 (7): 1892–1907. DOI: 10.4161/hv.28840.

  24. Semakova A.P., Amirov N.B. Ad"yuvantnye tekhnologii v sozdanii sovremennykh vaktsin [Adjuvant technologies in the construction of advanced vaccines]. Problemy osobo opasnykh infektsiy. 2016; 2 (2): 28–35. DOI: 10.21055/0370-1069-2016-2-28-35 (in Russian).

  25. Riedmann E.M. Influenza vaccine effectiveness boosted by near-infrared laser light. Hum Vaccin Immunother. 2014; 10 (2): 253.

  26. Nirschl C.J., Anandasabapathy N. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Hum Vaccin Immunother. 2016; 12 (1): 104–116. DOI: 10.1080/21645515.2015.1066050.

  27. Hayashi T., Momota M., Kuroda E., Kusakabe T., Kobari S., Makisaka K., Ohno Y., Suzuki Y., Nakagawa F., Lee M.S.J., Coban C., Onodera R., Higashi T., Motoyama K., Ishii K.J., Arima H. DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination. Front Immunol. 2018; 9: 2619. DOI: 10.3389/fimmu.2018.02619.

  28. Combadiere B., Liard C. Transcutaneous and intradermal vaccination. Hum Vaccin. 2011; 7 (8): 811–827. DOI: 10.4161/hv.7.8.16274.

  29. Fehres C.M., Garcia-Vallejo J.J., Unger W.W., van Kooyk Y. Skin-resident antigen-presenting cells: instruction manual for vaccine development. Front Immunol. 2013; 4: 157. DOI: 10.3389/fimmu.2013.00157.

  30. Zehrung D., Jarrahian C., Wales A. Intradermal delivery for vaccine dose sparing: overview of current issues. Vaccine. 2013; 31 (34): 3392–3395. DOI: 10.1016/j.vaccine.2012.11.021.

  31. Nicolas J.F., Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines. 2008; 7 (8): 1201–1214. DOI: 10.1586/14760584.7.8.1201.

  32. Chen W.R., Adams R.L., Carubelli R., Nordquist R.E. Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 1997; 115 (1): 25–30. DOI: 10.1016/s0304-3835(97)04707-1.

  33. Zhou C., Chen X., Zhang Q., Wang J., Wu M.X. Laser mimicking mosquito bites for skin delivery of malaria sporozoite vaccines. J. Control Release. 2015; 204: 30–37. DOI: 10.1016/j.jconrel.2015.02.031.

  34. Zhou F., Yang J., Zhang Y., Liu M., Lang M.L., Li M., Chen W.R. Local Phototherapy Synergizes with Immunoadjuvant for Treatment of Pancreatic Cancer through Induced Immunogenic Tumor Vaccine. Clin Cancer Res. 2018; 24 (21): 5335–5346. DOI: 10.1158/1078-0432.CCR-18-1126.

  35. Zhou F., Li X., Sheng S., Acquaviva J.T., Roman F.W., Eric W.H., Chen W.R. Anti-tumor responses induced by laser irradiation and immunological stimulation using a mouse mammary tumor model. Journal of Innovative Optical Health Sciences. 2013; 6. DOI: 10.1142/S1793545813500399.

  36. Luo M., Shi L., Zhang F., Zhou F., Zhang L., Wang B., Wang P., Zhang Y., Zhang H., Yang D., Zhang G., Chen W.R., Wang X. Laser immunotherapy for cutaneous squamous cell carcinoma with optimal thermal effects to enhance tumour immunogenicity. Int J. Hyperthermia. 2018; 34 (8): 1337–1350. DOI: 10.1080/02656736.2018.1446221.

  37. Naylor M.F., Zhou F., Geister B.V., Nordquist R.E., Li X., Chen W.R. Treatment of advanced melanoma with laser immunotherapy and ipilimumab. J. Biophotonics. 2017; 10 (5): 618–622. DOI: 10.1002/jbio.201600271.

  38. Shi L., Luo M., Zhang F., Zhang L., Wang B., Liu P., Zhang Y., Zhang H., Yang D., Zhang G., Zhou F., Stepp H., Sroka R., Chen W.R., Wang X. Photothermal therapy enhanced the effectiveness of imiquimod against refractory cutaneous warts through boosting immune responses. J. Biophotonics. 2019; 12 (2). DOI: 10.1002/jbio.201800149.

  39. Mitsunaga M., Ogawa M., Kosaka N., Rosenblum L.T., Choyke P.L., Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011; 17 (12): 1685–1691. DOI: 10.1038/nm.2554.

  40. Kimizuka Y., Callahan J.J., Huang Z., Morse K., Katagiri W., Shigeta A., Bronson R., Takeuchi S., Shimaoka Y., Chan M.P.K., Zeng Y., Li B., Chen H., Tan R.Y.Y., Dwyer C., Mulley T., Leblanc P., Goudie C., Gelfand J., Tsukada K., Brauns T., Poznansky M.C., Bean D., Kashiwagi S. Semiconductor diode laser device adjuvanting intradermal vaccine. Vaccine. 2017; 35 (18): 2404–2412. DOI: 10.1016/j.vaccine.2017.03.036.

  41. Yokomizo S., Katagiri W., Maki Y., Sano T., Inoue K., Fukushi M., Atochin D.N., Kushibiki T., Kawana A., Kimizuka Y., Kashiwagi S. Brief exposure of skin to near-infrared laser augments early vaccine responses. Nanophotonics. 2021; 10 (12): 3187–3197. DOI: 10.1515/nanoph-2021-0133.

  42. Morse K., Kimizuka Y., Chan M.P.K., Shibata M., Shimaoka Y., Takeuchi S., Forbes B., Nirschl C., Li B., Zeng Y., Bronson RT., Katagiri W., Shigeta A., Sîrbulescu R.F., Chen H., Tan R.Y.Y., Tsukada K., Brauns T., Gelfand J., Sluder A., Locascio J.J., Poznansky M.C., Anandasabapathy N., Kashiwagi S. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine. J. Immunol. 2017; 199 (4): 1319–1332. DOI: 10.4049/jimmunol.1601873.

  43. Kimizuka Y., Katagiri W., Locascio J.J., Shigeta A., Sasaki Y., Shibata M., Morse K., Sîrbulescu R.F., Miyatake M., Reeves P., Suematsu M., Gelfand J., Brauns T., Poznansky M.C., Tsukada K., Kashiwagi S. Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. J. Immunol. 2018; 201 (12): 3587–3603. DOI: 10.4049/jimmunol.1701687.

  44. Gelfand J.A., Nazarian R.M., Kashiwagi S., Brauns T., Martin B., Kimizuka Y., Korek S., Botvinick E., Elkins K., Thomas L., Locascio J., Parry B., Kelly K.M., Poznansky M.C. A pilot clinical trial of a near-infrared laser vaccine adjuvant: safety, tolerability, and cutaneous immune cell trafficking. FASEB J. 2019; 33 (2): 3074–3081. DOI: 10.1096/fj.201801095R.

  45. Sokolovski S.G., Zolotovskaya S.A., Goltsov A., Pourreyron C., South A.P., Rafailov E.U. Infrared laser pulse triggers increased singlet oxygen production in tumour cells. Sci Rep. 2013; 3: 3484. DOI: 10.1038/srep03484.

  46. Katagiri W., Lee G., Tanushi A., Tsukada K., Choi H.S., Kashiwagi S. High-throughput single-cell live imaging of photobiomodulation with multispectral near-infrared lasers in cultured T cells. J. Biomed Opt. 2020; 25 (3): 1–18. DOI: 10.1117/1.JBO.25.3.036003v.

  47. Lopes P.P., Todorov G., Pham T.T., Nesburn A.B., Bahraoui E., BenMohamed L. Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8+ TEM and TRM Cell Responses against Herpesvirus Infection and Disease. J. Virol. 2018; 92 (8). DOI: 10.1128/JVI.02156-17.

  48. Wang J., Shah D., Chen X., Anderson R.R., Wu M.X. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat Commun. 2014; 5: 4447. DOI: 10.1038/ncomms5447.

  49. Scheiblhofer S., Strobl A., Hoepflinger V., Thalhamer T., Steiner M., Thalhamer J., Weiss R. Skin vaccination via fractional infrared laser ablation – Optimization of laser-parameters and adjuvantation. Vaccine. 2017; 35 (14): 1802–1809. DOI: 10.1016/j.vaccine.2016.11.105.

  50. Wang J., Li B., Wu M.X. Effective and lesion-free cutaneous influenza vaccination. Proc Natl Acad Sci USA. 2015; 112 (16): 5005–5010. DOI: 10.1073/pnas.1500408112.

  51. Kim K.S., Kim H., Park Y., Kong W.H., Lee S.W., Kwok S.J., Hahn S.K., Yun S.H. Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant. Adv Funct Mater. 2016; 26 (15): 2512–2522. DOI: 10.1002/adfm.201504879.

  52. Alexandratou E., Yova D., Handris P. Human fibroblast alterations indused by low power laser irradiation at the single cell level using confocal microscopy. Photochemical Photobiological Science. 2003; 1 (8): 547–552.

  53. Roit A., Brostoff J., Mail D. Immunologiya [Immunology]. Moscow: Mir; 2000. 592 (in Russian).

  54. Watman N.P., Crespo L., Davis B. Differential effect on fresh and cultured T cells of PHA-induced changes in free cytoplasmic calcium: relation to IL-2 receptor expression, IL-2 production, and proliferation. Cellular Immun. 1988; 111 (1): 158–166.

  55. Manteyfel' V.M., Karu T.Y. Izluchenie He-Ne lazera deystvuet na T- i ne deystvuet na V-limfotsity. Tsitofluorimetricheskiy analiz khromatina [Efficacy of He-Ne laser radiation on T- and B-lymphocytes. Cytofluorimetric analysis of chromatin]. Doklady Akademii nauk. 1999; 365 (2): 267–269 (in Russian).

  56. Adachi Y., Kindzelskii A.L., Ohno N., Yadomae T., Petty H.R. Amplitude and frequency modulation of metabolic signals in leukocytes: synergistic role of IFN-gamma in IL-6- and IL-2-mediated cell activation. J. Immunol. 1999; 163 (8): 4367–4374.

  57. Rosenspire A.J., Kindzelskii A.L., Petty H.R. Interferon-gamma and sinusoidal electric fields signal by modulating NAD(P)H oscillations in polarized neutrophils. Biophys J. 2000; 79 (6): 3001–3008. DOI: 10.1016/S0006-3495(00)76536-2.

  58. Pozner J.M., Goldberg D.J. Histologic effect of a variable pulsed Er:YAG laser. Dermatol Surg. 2000; 26 (8): 733–736. DOI: 10.1046/j.1524-4725.2000.00035.x.

  59. Saedi N., Petelin A., Zachary C. Fractionation: a new era in laser resurfacing. Clin Plast Surg. 2011; 38 (3): 449–461. DOI: 10.1016/j.cps.2011.02.008.

  60. Wang J., Shah D., Chen X., Anderson R.R., Wu M.X. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat Commun. 2014; 5: 4447. DOI: 10.1038/ncomms5447.

  61. Li P., Wang J., Cao M., Deng Q., Jiang S., Wu M.X., Lu L. Topical Application of a Vitamin A Derivative and Its Combination With Non-ablative Fractional Laser Potentiates Cutaneous Influenza Vaccination. Front Microbiol. 2018; 9: 2570. DOI: 10.3389/fmicb.2018.02570.

  62. Larange A., Cheroutre H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu Rev Immunol. 2016; 34: 369–394. DOI: 10.1146/annurev-immunol-041015-055427.

  63. Daoud A.A., Gianatasio C., Rudnick A., Michael M., Waibel J. Efficacy of Combined Intense Pulsed Light (IPL) With Fractional CO2 -Laser Ablation in the Treatment of Large Hypertrophic Scars: A Prospective, Randomized Control Trial. Lasers Surg Med. 2019; 51 (8): 678–685. DOI: 10.1002/lsm.23092.

  64. Schipper P., van der Maaden K., Romeijn S., Oomens C., Kersten G., Jiskoot W., Bouwstra J. Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. J. Control Release. 2016; 242: 141–147. DOI: 10.1016/j.jconrel.2016.07.055.

  65. Farkas J.P., Richardson J.A., Burrus C.F., Hoopman J.E., Brown S.A., Kenkel J.M. In vivo histopathologic comparison of the acute injury following treatment with five fractional ablative laser devices. Aesthet Surg J. 2010; 30 (3): 457–464. DOI: 10.1177/1090820X10373060.

  66. Haedersdal M., Sakamoto F.H., Farinelli W.A., Doukas A.G., Tam J., Anderson R.R. Fractional CO(2) laser-assisted drug delivery. Lasers Surg Med. 2010; 42 (2): 113–122. DOI: 10.1002/lsm.20860.

  67. Bachhav Y.G., Summer S., Heinrich A., Bragagna T., Böhler C., Kalia Y.N. Effect of controlled laser microporation on drug transport kinetics into and across the skin. J Control Release. 2010; 146 (1): 31–36. DOI: 10.1016/j.jconrel.2010.05.025.

  68. Weiss R., Hessenberger M., Kitzmüller S., Bach D., Weinberger E.E., Krautgartner W.D., Hauser-Kronberger C., Malissen B., Boehler C., Kalia Y.N., Thalhamer J., Scheiblhofer S. Transcutaneous vaccination via laser microporation. J Control Release. 2012; 162 (2): 391–399. DOI: 10.1016/j.jconrel.2012.06.031.

  69. Joshi D., Gala R.P., Uddin M.N., D'Souza M.J. Novel ablative laser mediated transdermal immunization for microparticulate measles vaccine. Int J. Pharm. 2021; 606. DOI: 10.1016/j.ijpharm.2021.120882.

  70. Teunissen M.B., Zehrung D. Cutaneous vaccination – Protective immunization is just a skin-deep step away. Vaccine. 2015; 33 (37): 4659–4662. DOI: 10.1016/j.vaccine.2015.07.079.

  71. Chen X., Shah D., Kositratna G., Manstein D., Anderson R.R., Wu M.X. Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J. Control Release. 2012; 159 (1): 43–51. DOI: 10.1016/j.jconrel.2012.01.002.

  72. Hessenberger M., Weiss R., Weinberger E.E., Boehler C., Thalhamer J., Scheiblhofer S. Transcutaneous delivery of CpG-adjuvanted allergen via laser-generated micropores. Vaccine. 2013; 31 (34): 3427–3434. DOI: 10.1016/j.vaccine.2012.09.086.

  73. Kumar M.N.K., Zhou C., Wu MX. Laser-facilitated epicutaneous immunotherapy to IgE-mediated allergy. J. Control Release. 2016; 235: 82–90. DOI: 10.1016/j.jconrel.2016.05.057.

  74. Machado Y., Duinkerken S., Hoepflinger V., Mayr M., Korotchenko E., Kurtaj A., Pablos I., Steiner M., Stoecklinger A., Lübbers J., Schmid M., Ritter U., Scheiblhofer S., Ablinger M., Wally V., Hochmann S., Raninger A.M., Strunk D., van Kooyk Y., Thalhamer J., Weiss R. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy. J. Control Release. 2017; 266: 87–99. DOI: 10.1016/j.jconrel.2017.09.020.

  75. Scheiblhofer S., Strobl A., Hoepflinger V., Thalhamer T., Steiner M., Thalhamer J., Weiss R. Skin vaccination via fractional infrared laser ablation – Optimization of laser-parameters and adjuvantation. Vaccine. 2017; 35 (14): 1802–1809. DOI: 10.1016/j.vaccine.2016.11.105.

  76. Joubert I.A., Kovacs D., Scheiblhofer S., Winter P., Korotchenko E., Strandt H., Weiss R. Mast cells and γδ T cells are largely dispensable for adaptive immune responses after laser-mediated epicutaneous immunization. Vaccine. 2020; 38 (5): 1015–1024. DOI: 10.1016/j.vaccine.2019.11.051.

Received 01 July 2022; accepted 08 September 2022.

 

Information about the authors

Zayneeva Roza Shamilevna, Candidate of Sciences (Biology), Associate Professor, Chair of Physiology and Pathophysiology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-7784-2404.

Gil'mutdinova Aygul' Kamilovna, Trainee Researcher, Laboratory of Nonlinear and Microwave Photonics, S.P. Kapitsa Research and Technology Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-9937-8000.

Zolotovskiy Igor' Olegovich, Candidate of Sciences (Physics and Mathematics), Leading Researcher, Laboratory of Nonlinear and Microwave Photonics, S.P. Kapitsa Research and Technology Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-1793-5211.

Khokhlova Anna Vyacheslavovna, Junior Researcher, Laboratory of Nonlinear and Microwave Photonics, S.P. Kapitsa Research and Technology Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-3976-8805.

Ribenek Valeriya Aleksandrovna, Research Assistant, Laboratory of Nonlinear and Microwave Photonics, S.P. Kapitsa Research and Technology Institute, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-9233-5339.

Gening Tat'yana Petrovna, Doctor of Sciences (Biology), Professor, Head of the Chair of Physiology and Pathophysiology, Ulyanovsk State University. 432017, Russia, Ulyanovsk, L. Tolstoy St., 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-5117-1382.

 

For citation

Zayneeva R.Sh., Gil'mutdinova A.K., Zolotovskiy I.O., Khokhlova A.V., Ribenek V.A., Gening T.P. Lazernye ad"yuvanty: osobennosti i osnovnye kharakteristiki [Laser adjuvants: Key features and specificity]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2022; 4: 93–108. DOI: 10.34014/2227-1848-2022-4-93-108 (in Russian).

 

Скачать статью

УДК 615.375

DOI 10.34014/2227-1848-2022-4-93-108

ЛАЗЕРНЫЕ АДЪЮВАНТЫ: ОСОБЕННОСТИ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Р.Ш. Зайнеева, А.K. Гильмутдинова, И.О. Золотовский, А.В. Хохлова, В.А. Рибенек, Т.П. Генинг

ФГБОУ ВО «Ульяновский государственный университет», г. Ульяновск, Россия

 

Повышение эффективности вакцинации и поиск новых адъювантов, действующих непосредственно на иммунокомпетентные клетки и стимулирующих формирование выраженного адаптивного иммунного ответа, остаются значимыми проблемами современной медицины. На сегодняшний день в качестве адъювантов используют соли алюминия и другие химические вещества, имеющие определенные побочные действия. Поэтому актуальным является поиск других методов повышения эффективности вакцинации при снижении токсического действия на организм человека. Одним из них является лазерное облучение места введения вакцины, которое в том числе позволяет снизить ее количество.

Целью настоящего обзора является анализ публикаций, посвященных использованию лазерных источников для стимуляции иммунного ответа.

Известно, что 4 различных класса лазерных устройств системно усиливают иммунный ответ на внутрикожную вакцинацию: импульсные лазеры, лазеры, работающие в непрерывном режиме, неабляционные фракционные лазеры и абляционные фракционные лазеры. Каждый тип лазерного вакцинного адъюванта характеризуется параметрами излучения, способами действия и иммунологическими адъювантными эффектами, которые имеют значительные отличия. Рассмотрены основные классы лазерных устройств, используемых в качестве иммунологических адъювантов. Индивидуальные особенности каждого из них помогут подобрать наиболее эффективный вариант для достижения клинической цели при использовании определенной вакцины.

Ключевые слова: лазерный адъювант, импульсные лазеры, непрерывные лазеры, неабляционные фракционные лазеры, абляционные фракционные лазеры, внутрикожная вакцинация.

 

Литература

  1. Schijns V.E., Lavelle E.C. Trends in vaccine adjuvants. Expert Rev Vaccines. 2011; 10 (4): 539–550. DOI: 10.1586/erv.11.21.

  2. Москвин С.В., Ачилов А.А. Лазерная терапия аппаратами «Матрикс». Москва; Тверь: ООО «Издательство «Триада»; 2009. 152.

  3. Tsen S.W., Wu T.C., Kiang J.G., Tsen K.T. Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation. J. Biomed Sci. 2012; 19 (1): 62. DOI: 10.1186/1423-0127-19-62.

  4. Абдрахманова А.И., Амиров Н.Б. Современные представления о механизмах лазерного воздействия. Вестник современной клинической медицины. 2015; 8 (5): 7–12.

  5. Kashiwagi S. Laser adjuvant for vaccination. FASEB J. 2020; 34 (3): 3485–3500. DOI: 10.1096/fj.201902164R.

  6. Maki Y., Kashiwagi S., Kimizuka Y. Laser vaccine adjuvants: Light-augmented immune responses. Vaccine. 2021; 39 (46): 6805–6812. DOI: 10.1016/j.vaccine.2021.09.042.

  7. Martins K.A.O., Cooper C.L., Stronsky S.M., Norris S.L.W., Kwilas S.A., Steffens J.T., Benko J.G., van Tongeren S.A., Bavari S. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity. EBioMedicine. 2015; 3: 67–78. DOI: 10.1016/j.ebiom.2015.11.041.

  8. Sticchi L., Alberti M., Alicino C., Crovari P. The intradermal vaccination: past experiences and current perspectives. Prev Med Hyg. 2010; 51 (1): 7–14.

  9. Scheiblhofer S., Drothler S., Braun W., Braun R., Boesch M., Weiss R. Laser facilitated epicutaneous peptide immunization using dry patch technology. Vaccine. 2021; 39 (37): 5259–5264. DOI: 10.1016/j.vaccine.2021.07.083.

  10. Li Z., Cao Y., Li Y., Zhao Y., Chen X. Vaccine delivery alerts innate immune systems for more immunogenic vaccination. JCI Insight. 2021; 6 (7). DOI: 10.1172/jci.insight.144627.

  11. Kashiwagi S., Brauns T., Poznansky M.C. Classification of Laser Vaccine Adjuvants. J. Vaccines Vaccin. 2016; 7 (1): 307. DOI: 10.4172/2157-7560.1000307.

  12. Nivorozhkin A. Laser Vaccine Adjuvants: Corona Virus, Influenza and Beyond. Pharma Focus Asia. 2020. URL: https://www.pharmafocusasia.com/articles/laser-vaccine-adjuvants (дата обращения: 24.05.2022).

  13. Goff P.H., Hayashi T., He W., Yao S., Cottam H.B., Tan G.S., Crain B., Krammer F., Messer K., Pu M., Carson D.A., Palese P., Corr M. Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands Work Additively via MyD88 To Induce Protective Antiviral Immunity in Mice. J Virol. 2017; 91 (19). DOI: 10.1128/JVI.01050-17.

  14. Garvie-Cook H., Stone J.M., Yu F., Guy R.H., Gordeev S.N. Femtosecond pulsed laser ablation to enhance drug delivery across the skin. J Biophotonics. 2016; 9 (1-2): 144–154. DOI: 10.1002/jbio.201500120.

  15. Kroemer G., Galluzzi L., Kepp O., Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013; 31: 51–72. DOI: 10.1146/annurev-immunol-032712-100008.

  16. Huang C.M. Topical vaccination: the skin as a unique portal to adaptive immune responses. Semin Immunopathol. 2007; 29 (1): 71–80. DOI: 10.1007/s00281-007-0059-2.

  17. Оникиенко С.Б., Земляной А.В., Тарасов В.А. Патент № 2345788; 2009.

  18. Onikienko S.B., Zemlyanoi A.V., Margulis B.A., Guzhova I.V., Pimenova A.A. Laser-based vaccine adjuvants: Patent № 10052376 US.

  19. Onikienko S.B., Zemlyanoy A.B., Margulis B.A. Diagnostics and correction of the metabolic and immune disorders. Interactions of bacterial endotoxins and lipophilic xenobiotics with receptors associated with innate immunity. Donosologiya (St. Petersburg). 2007; 1: 32–54.

  20. Kashiwagi S., Yuan J., Forbes B., Hibert M., Lee E.L.Q., Whicher L., Goudie C., Yang Y., Chen T., Edelblute B., Collette B., Edinghton L., Trussler J., Nezivar J., Leblanc P., Bronson R., Tsukada K., Suematsu M., Dover J., Poznansky M. Near-infrared laser adjuvant for influenza vaccine. PLoS One. 2013; 8 (12). DOI: 10.1371/journal.pone.0082899.

  21. Chen X., Kim P., Farinelli B., Doukas A., Yun S.H., Gelfand J.A., Anderson R.R., Wu M.X. A novel laser vaccine adjuvant increases the motility of antigen presenting cells. PLoS One. 2010; 5 (10): 13776. DOI: 10.1371/journal.pone.0013776.

  22. Chen X., Pravetoni M., Bhayana B., Pentel P.R., Wu M.X. High immunogenicity of nicotine vaccines obtained by intradermal delivery with safe adjuvants. Vaccine. 2012; 31 (1): 159–164. DOI: 10.1016/j.vaccine.2012.10.069.

  23. Kashiwagi S., Brauns T., Gelfand J., Poznansky M.C. Laser vaccine adjuvants. History, progress, and potential. Hum Vaccin Immunother. 2014; 10 (7): 1892–1907. DOI: 10.4161/hv.28840.

  24. Семакова А.П., Амиров Н.Б. Адъювантные технологии в создании современных вакцин. Проблемы особо опасных инфекций. 2016; 2 (2): 28–35. DOI: 10.21055/0370-1069-2016-2-28-35.

  25. Riedmann E.M. Influenza vaccine effectiveness boosted by near-infrared laser light. Hum Vaccin Immunother. 2014; 10 (2): 253.

  26. Nirschl C.J., Anandasabapathy N. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Hum Vaccin Immunother. 2016; 12 (1): 104–116. DOI: 10.1080/21645515.2015.1066050.

  27. Hayashi T., Momota M., Kuroda E., Kusakabe T., Kobari S., Makisaka K., Ohno Y., Suzuki Y., Nakagawa F., Lee M.S.J., Coban C., Onodera R., Higashi T., Motoyama K., Ishii K.J., Arima H. DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination. Front Immunol. 2018; 9: 2619. DOI: 10.3389/fimmu.2018.02619.

  28. Combadiere B., Liard C. Transcutaneous and intradermal vaccination. Hum Vaccin. 2011; 7 (8): 811–827. DOI: 10.4161/hv.7.8.16274.

  29. Fehres C.M., Garcia-Vallejo J.J., Unger W.W., van Kooyk Y. Skin-resident antigen-presenting cells: instruction manual for vaccine development. Front Immunol. 2013; 4: 157. DOI: 10.3389/fimmu.2013.00157.

  30. Zehrung D., Jarrahian C., Wales A. Intradermal delivery for vaccine dose sparing: overview of current issues. Vaccine. 2013; 31 (34): 3392–3395. DOI: 10.1016/j.vaccine.2012.11.021.

  31. Nicolas J.F., Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines. 2008; 7 (8): 1201–1214. DOI: 10.1586/14760584.7.8.1201.

  32. Chen W.R., Adams R.L., Carubelli R., Nordquist R.E. Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 1997; 115 (1): 25–30. DOI: 10.1016/s0304-3835(97)04707-1.

  33. Zhou C., Chen X., Zhang Q., Wang J., Wu M.X. Laser mimicking mosquito bites for skin delivery of malaria sporozoite vaccines. J. Control Release. 2015; 204: 30–37. DOI: 10.1016/j.jconrel.2015.02.031.

  34. Zhou F., Yang J., Zhang Y., Liu M., Lang M.L., Li M., Chen W.R. Local Phototherapy Synergizes with Immunoadjuvant for Treatment of Pancreatic Cancer through Induced Immunogenic Tumor Vaccine. Clin Cancer Res. 2018; 24 (21): 5335–5346. DOI: 10.1158/1078-0432.CCR-18-1126.

  35. Zhou F., Li X., Sheng S., Acquaviva J.T., Roman F.W., Eric W.H., Chen W.R. Anti-tumor responses induced by laser irradiation and immunological stimulation using a mouse mammary tumor model. Journal of Innovative Optical Health Sciences. 2013; 6. DOI: 10.1142/S1793545813500399.

  36. Luo M., Shi L., Zhang F., Zhou F., Zhang L., Wang B., Wang P., Zhang Y., Zhang H., Yang D., Zhang G., Chen W.R., Wang X. Laser immunotherapy for cutaneous squamous cell carcinoma with optimal thermal effects to enhance tumour immunogenicity. Int J. Hyperthermia. 2018; 34 (8): 1337–1350. DOI: 10.1080/02656736.2018.1446221.

  37. Naylor M.F., Zhou F., Geister B.V., Nordquist R.E., Li X., Chen W.R. Treatment of advanced melanoma with laser immunotherapy and ipilimumab. J. Biophotonics. 2017; 10 (5): 618–622. DOI: 10.1002

    /jbio.201600271.

  38. Shi L., Luo M., Zhang F., Zhang L., Wang B., Liu P., Zhang Y., Zhang H., Yang D., Zhang G., Zhou F., Stepp H., Sroka R., Chen W.R., Wang X. Photothermal therapy enhanced the effectiveness of imiquimod against refractory cutaneous warts through boosting immune responses. J. Biophotonics. 2019; 12 (2). DOI: 10.1002/jbio.201800149.

  39. Mitsunaga M., Ogawa M., Kosaka N., Rosenblum L.T., Choyke P.L., Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011; 17 (12): 1685–1691. DOI: 10.1038/nm.2554.

  40. Kimizuka Y., Callahan J.J., Huang Z., Morse K., Katagiri W., Shigeta A., Bronson R., Takeuchi S., Shimaoka Y., Chan M.P.K., Zeng Y., Li B., Chen H., Tan R.Y.Y., Dwyer C., Mulley T., Leblanc P., Goudie C., Gelfand J., Tsukada K., Brauns T., Poznansky M.C., Bean D., Kashiwagi S. Semiconductor diode laser device adjuvanting intradermal vaccine. Vaccine. 2017; 35 (18): 2404–2412. DOI: 10.1016/j.vaccine.2017.03.036.

  41. Yokomizo S., Katagiri W., Maki Y., Sano T., Inoue K., Fukushi M., Atochin D.N., Kushibiki T., Kawana A., Kimizuka Y., Kashiwagi S. Brief exposure of skin to near-infrared laser augments early vaccine responses. Nanophotonics. 2021; 10 (12): 3187–3197. DOI: 10.1515/nanoph-2021-0133.

  42. Morse K., Kimizuka Y., Chan M.P.K., Shibata M., Shimaoka Y., Takeuchi S., Forbes B., Nirschl C., Li B., Zeng Y., Bronson RT., Katagiri W., Shigeta A., Sîrbulescu R.F., Chen H., Tan R.Y.Y., Tsukada K., Brauns T., Gelfand J., Sluder A., Locascio J.J., Poznansky M.C., Anandasabapathy N., Kashiwagi S. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine. J. Immunol. 2017; 199 (4): 1319–1332. DOI: 10.4049/jimmunol.1601873.

  43. Kimizuka Y., Katagiri W., Locascio J.J., Shigeta A., Sasaki Y., Shibata M., Morse K., Sîrbulescu R.F.,Miyatake M., Reeves P., Suematsu M., Gelfand J., Brauns T., Poznansky M.C., Tsukada K., Kashiwagi S.Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. J. Immunol. 2018; 201 (12): 3587–3603. DOI: 10.4049/jimmunol.1701687.

  44. Gelfand J.A., Nazarian R.M., Kashiwagi S., Brauns T., Martin B., Kimizuka Y., Korek S., Botvinick E., Elkins K., Thomas L., Locascio J., Parry B., Kelly K.M., Poznansky M.C. A pilot clinical trial of a near-infrared laser vaccine adjuvant: safety, tolerability, and cutaneous immune cell trafficking. FASEB J. 2019; 33 (2): 3074–3081. DOI: 10.1096/fj.201801095R.

  45. Sokolovski S.G., Zolotovskaya S.A., Goltsov A., Pourreyron C., South A.P., Rafailov E.U. Infrared laser pulse triggers increased singlet oxygen production in tumour cells. Sci Rep. 2013; 3: 3484. DOI: 10.1038/srep03484.

  46. Katagiri W., Lee G., Tanushi A., Tsukada K., Choi H.S., Kashiwagi S. High-throughput single-cell live imaging of photobiomodulation with multispectral near-infrared lasers in cultured T cells. J. Biomed Opt. 2020; 25 (3): 1–18. DOI: 10.1117/1.JBO.25.3.036003v.

  47. Lopes P.P., Todorov G., Pham T.T., Nesburn A.B., Bahraoui E., BenMohamed L. Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8+ TEM and TRM Cell Responses against Herpesvirus Infection and Disease. J. Virol. 2018; 92 (8). DOI: 10.1128/JVI.02156-17.

  48. Wang J., Shah D., Chen X., Anderson R.R., Wu M.X. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat Commun. 2014; 5: 4447. DOI: 10.1038/ncomms5447.

  49. Scheiblhofer S., Strobl A., Hoepflinger V., Thalhamer T., Steiner M., Thalhamer J., Weiss R. Skin vaccination via fractional infrared laser ablation – Optimization of laser-parameters and adjuvantation. Vaccine. 2017; 35 (14): 1802–1809. DOI: 10.1016/j.vaccine.2016.11.105.

  50. Wang J., Li B., Wu M.X. Effective and lesion-free cutaneous influenza vaccination. Proc Natl Acad Sci USA. 2015; 112 (16): 5005–5010. DOI: 10.1073/pnas.1500408112.

  51. Kim K.S., Kim H., Park Y., Kong W.H., Lee S.W., Kwok S.J., Hahn S.K., Yun S.H. Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant. Adv Funct Mater. 2016; 26 (15): 2512–2522. DOI: 10.1002/adfm.201504879.

  52. Alexandratou E., Yova D., Handris P. Human fibroblast alterations indused by low power laser irradiation at the single cell level using confocal microscopy. Photochemical Photobiological Science. 2003; 1 (8): 547–552.

  53. Ройт А., Бростофф Дж., Мэйл Д. Иммунология. Москва: Мир; 2000. 592.

  54. Watman N.P., Crespo L., Davis B. Differential effect on fresh and cultured T cells of PHA-induced changes in free cytoplasmic calcium: relation to IL-2 receptor expression, IL-2 production, and proliferation. Cellular Immun. 1988; 111 (1): 158–166.

  55. Мантейфель В.М., Кару Т.Й. Излучение He-Ne лазера действует на Т- и не действует на В-лимфоциты. Цитофлуориметрический анализ хроматина. Доклады Академии наук. 1999; 365 (2): 267–269.

  56. Adachi Y., Kindzelskii A.L., Ohno N., Yadomae T., Petty H.R. Amplitude and frequency modulation of metabolic signals in leukocytes: synergistic role of IFN-gamma in IL-6- and IL-2-mediated cell activation. J. Immunol. 1999; 163 (8): 4367–4374.

  57. Rosenspire A.J., Kindzelskii A.L., Petty H.R. Interferon-gamma and sinusoidal electric fields signal by modulating NAD(P)H oscillations in polarized neutrophils. Biophys J. 2000; 79 (6): 3001–3008. DOI: 10.1016/S0006-3495(00)76536-2.

  58. Pozner J.M., Goldberg D.J. Histologic effect of a variable pulsed Er:YAG laser. Dermatol Surg. 2000; 26 (8): 733–736. DOI: 10.1046/j.1524-4725.2000.00035.x.

  59. Saedi N., Petelin A., Zachary C. Fractionation: a new era in laser resurfacing. Clin Plast Surg. 2011; 38 (3): 449–461. DOI: 10.1016/j.cps.2011.02.008.

  60. Wang J., Shah D., Chen X., Anderson R.R., Wu M.X. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat Commun. 2014; 5: 4447. DOI: 10.1038/ncomms5447.

  61. Li P., Wang J., Cao M., Deng Q., Jiang S., Wu M.X., Lu L. Topical Application of a Vitamin A Derivative and Its Combination With Non-ablative Fractional Laser Potentiates Cutaneous Influenza Vaccination. Front Microbiol. 2018; 9: 2570. DOI: 10.3389/fmicb.2018.02570.

  62. Larange A., Cheroutre H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu Rev Immunol. 2016; 34: 369–394. DOI: 10.1146/annurev-immunol-041015-055427.

  63. Daoud A.A., Gianatasio C., Rudnick A., Michael M., Waibel J. Efficacy of Combined Intense Pulsed Light (IPL) With Fractional CO2 -Laser Ablation in the Treatment of Large Hypertrophic Scars: A Prospective, Randomized Control Trial. Lasers Surg Med. 2019; 51 (8): 678–685. DOI: 10.1002/lsm.23092.

  64. Schipper P., van der Maaden K., Romeijn S., Oomens C., Kersten G., Jiskoot W., Bouwstra J. Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. J. Control Release. 2016; 242: 141–147. DOI: 10.1016/j.jconrel.2016.07.055.

  65. Farkas J.P., Richardson J.A., Burrus C.F., Hoopman J.E., Brown S.A., Kenkel J.M. In vivo histopathologic comparison of the acute injury following treatment with five fractional ablative laser devices. Aesthet Surg J. 2010; 30 (3): 457–464. DOI: 10.1177/1090820X10373060.

  66. Haedersdal M., Sakamoto F.H., Farinelli W.A., Doukas A.G., Tam J., Anderson R.R. Fractional CO(2) laser-assisted drug delivery. Lasers Surg Med. 2010; 42 (2): 113–122. DOI: 10.1002/lsm.20860.

  67. Bachhav Y.G., Summer S., Heinrich A., Bragagna T., Böhler C., Kalia Y.N. Effect of controlled laser microporation on drug transport kinetics into and across the skin. J. Control Release. 2010; 146 (1): 31–36. DOI: 10.1016/j.jconrel.2010.05.025.

  68. Weiss R., Hessenberger M., Kitzmüller S., Bach D., Weinberger E.E., Krautgartner W.D., Hauser-Kronberger C., Malissen B., Boehler C., Kalia Y.N., Thalhamer J., Scheiblhofer S. Transcutaneous vaccination via laser microporation. J. Control Release. 2012; 162 (2): 391–399. DOI: 10.1016/j.jconrel.2012.06.031.

  69. Joshi D., Gala R.P., Uddin M.N., D'Souza M.J. Novel ablative laser mediated transdermal immunization for microparticulate measles vaccine. Int J. Pharm. 2021; 606. DOI: 10.1016/j.ijpharm.2021.120882.

  70. Teunissen M.B., Zehrung D. Cutaneous vaccination – Protective immunization is just a skin-deep step away. Vaccine. 2015; 33 (37): 4659–4662. DOI: 10.1016/j.vaccine.2015.07.079.

  71. Chen X., Shah D., Kositratna G., Manstein D., Anderson R.R., Wu M.X. Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J. Control Release. 2012; 159 (1): 43–51. DOI: 10.1016/j.jconrel.2012.01.002.

  72. Hessenberger M., Weiss R., Weinberger E.E., Boehler C., Thalhamer J., Scheiblhofer S. Transcutaneous delivery of CpG-adjuvanted allergen via laser-generated micropores. Vaccine. 2013; 31 (34): 3427–3434. DOI: 10.1016/j.vaccine.2012.09.086.

  73. Kumar M.N.K., Zhou C., Wu MX. Laser-facilitated epicutaneous immunotherapy to IgE-mediated allergy. J. Control Release. 2016; 235: 82–90. DOI: 10.1016/j.jconrel.2016.05.057.

  74. Machado Y., Duinkerken S., Hoepflinger V., Mayr M., Korotchenko E., Kurtaj A., Pablos I., Steiner M., Stoecklinger A., Lübbers J., Schmid M., Ritter U., Scheiblhofer S., Ablinger M., Wally V., Hochmann S., Raninger A.M., Strunk D., van Kooyk Y., Thalhamer J., Weiss R. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy. J. Control Release. 2017; 266: 87–99. DOI: 10.1016/j.jconrel.2017.09.020.

  75. Scheiblhofer S., Strobl A., Hoepflinger V., Thalhamer T., Steiner M., Thalhamer J., Weiss R. Skin vaccination via fractional infrared laser ablation – Optimization of laser-parameters and adjuvantation. Vaccine. 2017; 35 (14): 1802–1809. DOI: 10.1016/j.vaccine.2016.11.105.

  76. Joubert I.A., Kovacs D., Scheiblhofer S., Winter P., Korotchenko E., Strandt H., Weiss R. Mast cells and γδ T cells are largely dispensable for adaptive immune responses after laser-mediated epicutaneous immunization. Vaccine. 2020; 38 (5): 1015–1024. DOI: 10.1016/j.vaccine.2019.11.051.

Поступила в редакцию 01.07.2022; принята в печать 08.09.2022.

 

Авторский коллектив

Зайнеева Роза Шамилевна – кандидат биологических наук, доцент кафедры физиологии и патофизиологии, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-7784-2404.

Гильмутдинова Айгуль Камиловна – стажер-исследователь лаборатории нелинейной и микроволновой фотоники Научно-исследовательского технологического института им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-9937-8000.

Золотовский Игорь Олегович – кандидат физико-математических наук, ведущий научный сотрудник лаборатории нелинейной и микроволновой фотоники Научно-исследовательского технологического института им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-1793-5211.

Хохлова Анна Вячеславовна – младший научный сотрудник лаборатории нелинейной и микроволновой фотоники Научно-исследовательского технологического института им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-3976-8805.

Рибенек Валерия Александровна – стажер-исследователь лаборатории нелинейной и микроволновой фотоники Научно-исследовательского технологического института им. С.П. Капицы, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-9233-5339.

Генинг Татьяна Петровна – доктор биологических наук, профессор, заведующий кафедрой физиологии и патофизиологии, ФГБОУ ВО «Ульяновский государственный университет». 432017, Россия, г. Ульяновск, ул. Л. Толстого, 42; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-5117-1382.

 

Образец цитирования

Зайнеева Р.Ш., Гильмутдинова А.K., Золотовский И.О., Хохлова А.В., Рибенек В.А., Генинг Т.П. Лазерные адъюванты: особенности и основные характеристики. Ульяновский медико-биологический журнал. 2022; 4: 93–108. DOI: 10.34014/2227-1848-2022-4-93-108.