Download article

DOI 10.34014/2227-1848-2023-2-6-29

MOLECULAR AND CELLULAR MECHANISMS OF HYPOXIC RESPONSE

N.N. Bondarenko, E.V. Khomutov, T.L. Ryapolova, M.S. Kishenya, T.S. Ignatenko, V.A. Tolstoy, I.S. Evtushenko, S.V. Tumanova

Donetsk State Medical University named after M. Gorky, Donetsk, Russia

 

Hypoxia is a typical pathological process characterized by oxygen tissue deficiency with the pathological and protective-compensatory reactions. The article briefly outlines the issues of hypoxia study and interval hypoxic training in clinical and rehabilitation practice while treating various diseases and pathological processes. The authors consider types of physiological and pathological responses to hypoxia, key aspects in the pathogenesis of normo- and hypobaric hypoxia under normal and reduced atmospheric pressure, and stages of hypoxia development. Physiological and biochemical responses to interval hypoxic training are associated with oxidative stress, which develops as a result of an imbalance between the pro- and antioxidant systems, and excessive production of reactive oxygen species. Interval hypoxic training is aimed at adequate activation of defense systems with the formation of stable adaptation to damaging factors. The authors prove the key role of HIF-1α biological effects in the mechanisms of cellular and tissue adaptation to oxygen deficiency. The authors also analyze the role of adenosine and adenosine receptors in acute and chronic inflammatory diseases associated with tissue hypoxia.

Key words: hypoxia, interval hypoxic training, hypoxia-induced factor, adenosine.

 

Conflict of interest. The authors declare no conflict of interest.

Author contributions
Research concept: Bondarenko N.N., Ryapolova T.L., Ignatenko T.S.
Literary search: Khomutov E.V., Kishenya M.S., Tolstoy V.A., Evtushenko I.S., Tumanova S.V.
Draft preparation and writing: Khomutov E.V., Kishenya M.S., Tolstoy V.A., Evtushenko I.S., Tumanova S.V.
Text writing and editing: Bondarenko N.N., Ryapolova T.L., Ignatenko T.S.

 

References

  1. Glazachev O.S., Kryzhanovskaya S.Yu. Adaptatsionnaya meditsina: strategiya psikhofiziologicheskogo prisposobleniya cheloveka k kriticheski izmenennoy okruzhayushchey srede [Adaptive medicine: psychophysiological adaptation strategy to a critically altered environment]. Vestnik Mezhdunarodnoy akademii nauk. Russkaya sektsiya. 2019; 1: 48–55 (in Russian).

  2. Ashagre S.M., Borukaeva I.Kh. Patofiziologicheskoe obosnovanie primeneniya interval'noy gipoksiterapii i enteral'noy oksigenoterapii v lechenii gipertonicheskoy bolezni [Pathophysiological substantiation of the use of interval hypoxic therapy and enteral oxygen therapy in the treatment of hypertension]. Sovremennye problemy nauki i obrazovaniya. 2022; 1. Available at: https://science-education.ru/ru/article/view?id=31506 (accessed: April 06, 2023). DOI: 10.17513/spno.31506.

  3. Ignatenko G.A., Dubovaya A.V., Naumenko Yu.V. Vozmozhnosti primeneniya normobaricheskoy gipoksiterapii v terapevticheskoy i pediatricheskoy praktikakh [Treatment potential of normobaric hypoxic therapy in therapeutic and pediatric practice]. Rossiyskiy vestnik perinatologii i pediatrii. 2022; 67 (6): 46–53. DOI: doi.org/10.21508/1027-4065-2022-67-6-46-53 (in Russian).

  4. Brocherie F., Millet G.P. Hypoxic exercise as an efective nonpharmacological therapeutic intervention. Exp Mol Med. 2020; 52 (3): 529–530.

  5. Ignatenko G.A., Mukhin I.V., Panieva N.Yu. Kachestvo zhizni u gipertenzivnykh bol'nykh gipotireozom na fone raznykh rezhimov terapii [Quality of life in hypertensive patients with hypothyroidism under different treatment modes]. Vestnik gigieny i epidemiologii. 2020; 24 (2): 185–188 (in Russian).

  6. Millet G.P., Debevec T., Brocherie F., Malatesta D., Girard O. Therapeutic use of exercising in hypoxia: promises and limitations. Front. Physiol. 2016; 7: 224. DOI: 10.3389/fphys.2016.00224.

  7. Paul S., Gangwar A., Bhargava K., Khurana P., Ahmad Y. Diagnosis and prophylaxis for high-altitude acclimatization: adherence to molecular rationale to evade high-altitude illnesses. Life Sci. 2018; 203: 171–176.

  8. Rybnikova E.A., Zenko M.Y., Barysheva V.S., Vetrovoy O. Acclimatization to middle attitude hypoxia masks the symptoms of experimental posttraumatic stress disorder, but does not affect its pathogenetic mechanisms. Bull. Exp. Biol. Med. 2020; 168: 614–617. DOI: 10.1007/s10517-020-04763-3.

  9. Yatskevich S.N., Zav'yalov A.I., Morrison V.V., Zakharova N.B. Akademik N.N. Sirotinin i ego nauchnyy vklad v razvitie otechestvennoy meditsiny (k 120-letiyu so dnya rozhdeniya) [Academician N.N. Sirotinin and his scientific contribution to the development of domestic medicine (120th anniversary of the birth)]. Saratovskiy nauchno-meditsinskiy zhurnal. 2016; 12 (4): 627–632 (in Russian).

  10. Chavala A. A journey between high altitude hypoxia and critical patient hypoxia: what can it teach us about compression and the management of critical disease? Med. Intensiva. 2018; 42 (6): 380–390.

  11. Serebrovska Z.O., Xi L., Tumanovska L.V., Shysh A.M., Goncharov S.V., Khetsuriani M., Kozak T.O., Pashevin D.A., Dosenko V.E., Virko S.V., Kholin V.А., Grib О.N., Utko N.А., Egorov Е., Polischuk А.О., Serebrovska Т.V. Response of circulating inflammatory markers to intermittent hypoxia-hyperoxia training in healthy elderly people and patients with mild cognitive impairment. Life. 2022; 12: 432. DOI: doi.org/10.3390.

  12. Chen P.S., Chiu W.T., Hsu P.L., Lin S.C., Peng I.C., Wang C.Y., Tsai S.J. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 2020; 27 (63): 1–19.

  13. Li Y., Li J., Atakan M.M., Wang Z., Hu Y., Nazif M., Zarekookandeh N., Ye H.Z., Kuang J., Ferri A., Petersen A., Garnham A., Bishop D.J., Girard O., Huang Y., Yan X. Methods to match high intensity interval exercise intensity in hypoxia and normoxia – a pilot study. J. Exerc. Sci. Fit. 2022; 20 (1): 70–76. DOI: 10.1016/j.jesf.2021.12.003.

  14. Allsopp G.L., Hoffmann S.M., Feros S.A., Pasco J.A., Russell A.P., Wright C.R. The effect of normobaric hypoxia on resistance training adaptations in older adults. J. Strength. Cond. Res. 2022; 36 (8): 2306–2312.

  15. Burtscher M., Gatterer H., Szubski C., Pierantozzi E., Faulhaber M. Effects of interval hypoxia on exercise tolerance: special focus on patients with CAD or COPD. Sleep Breath. 2010; 14: 209–220. DOI: 10.1007/s11325-009-0289-8.

  16. Glazachev O.S., Kryzhanovskaya S.Y., Zapara M.A., Dudnik E.N., Samartseva V.G., Susta D. Safety and efficacy of intermittent hypoxia conditioning as a new rehabilitation/ secondary prevention strategy for patients with cardiovascular diseases: a systematic review and meta-analysis. Curr. Cardiol. Rev. 2021; 17 (6): e051121193317. DOI: 10.2174/1573403X17666210514005235.

  17. Hein M., Chobanyan-Jurgens K., Tegtbur U., Engeli S., Jordan J., Haufe S. Effect of normobaric hypoxic exercise on blood pressure in old individuals. Eur. J. Appl. Physiol. 2021; 121 (3): 817–825.

  18. Ignatenko G.A. Sovremennye vozmozhnosti adaptatsionnoy meditsiny [Modern possibilities of adaptive medicine]. Klinicheskaya meditsina. 2008; 11. Available at: http://www.health-ua.com/articles/2798.html (accessed: April 06, 2023) (in Russian).

  19. Ignatenko G.A., Denisova E.M., Sergienko N.V. Gipoksiterapiya kak perspektivnyy metod povysheniya effektivnosti kompleksnogo lecheniya komorbidnoy patologii [Hypoxic therapy as a prospective method of increasing the effectiveness of complex treatment of comorbid pathology]. Vestnik neotlozhnoy i vosstanovitel'noy khirurgii. 2021; 6 (4): 73–80 (in Russian).

  20. Ignatenko G.A., Maylyan E.A., Ignatenko T.S., Kapanadze G.D. Vliyanie gipoksiterapii na soderzhanie autoantitel k antigenam shchitovidnoy zhelezy u zhenshchin s autoimmunnym tireoiditom [Influence of hypoxic therapy on the content of autoantibodies to thyroid antigens in women with autoimmune thyroiditis]. Mediko-sotsial'nye problemy sem'i. 2022; 27 (3): 46–51 (in Russian).

  21. Ignatenko G.A., Mukhin I.V., Sochilin A.V., Goncharov A.N., Subbotina E.A. Vliyanie gipoksiterapii na respiratornye rasstroystva u gipertenzivnykh bol'nykh pylevoy khronicheskoy obstruktivnoy bolezni legkikh v period ikh reabilitatsii [Influence of hypoxic therapy on respiratory disorders in hypertensive patients with dust chronic obstructive pulmonary disease during rehabilitation]. Universitetskaya klinika. 2023; 4 (45): 12–18 (in Russian).

  22. Gangwar A., Paul S., Ahmad Y., Bhargava K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated infammatory processes and redox post-translational modifcations: benefts at high altitude. Sci Rep. 2020; 10 (1): 7899. DOI: doi.org/10.1038/s41598-020-64848-x.

  23. Lee К., Staples K.J., Spalluto C.M., Watson A., Wilkinson T.M. Influence of hypoxia on the epithelial-pathogen interactions in the lung: implications for respiratory disease. Front. Immunol. 2021; 12: 653969. DOI: org/10.3389/fimmu.2021.653969.

  24. Wang H., Shi X., Schenck H., Hall J.R., Ross S.E., Kline G.P., Chen S., Mallet R.T., Chen P. Intermittent hypoxia training for treating mild cognitive impairment: a pilot study. Am. J. Alzheimers. Dis. Other. Demen. 2020; 35: 1533317519896725. DOI: 10.1177/1533317519896725.

  25. Zhang Y., Geng X., Tan Y., Li Q., Xu C., Xu J., Hao L., Zeng Z., Luo X., Liu F., Wang H. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother. 2020; 127: 110195. DOI: 10.1016/j.biopha.2020.110195.

  26. Alexander-Shani R., Mreisat A., Smeir E., Gerstenblith G., Stern M.D., Horowitz M. Long-term HIF-1α transcriptional activation is essential for heat-acclimation-mediated cross tolerance: mitochondrial target genes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017; 312 (5): R753–R762. DOI: 10.1152/ajpregu.00461.2016.

  27. Richalet J.-P. The invention of hypoxia. J. Appl. Physiol. 2021; 130: 1573–1582. DOI: 10.1152/japplphysiol.00936.2020.

  28. Litvitskiy P.F. Patofiziologiya [Pathophysiology]. 4-e izd. Moscow: GEOTAR-Media; 2009. 496 (in Russian).

  29. Smith K.A., Waypa G.B., Schumacker P.T. Redox signaling during hypoxia in mammalian cells. Redox Biol. 2017; 13: 228–234. DOI: 10.1016/j.redox.2017.05.020.

  30. Adam-Vizi V., Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol. Sci. 2006; 27 (12): 639–645. DOI: 10.1016/j.tips.2006.10.005.

  31. Balaban R.S. Modeling mitochondrial function. Am. J. Physiol. Cell Physiol. 2006; 291 (6): 1107–1113. DOI: org/10.1152/ajpcell.00223.2006.

  32. Hansen J.M., Go Y.M., Jones D.P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. An. Rev. Pharmacol. Toxicol. 2006; 46: 215–234. DOI: 10.1146/annurev.pharmtox.46.120604.141122.

  33. Soares R.O.S., Losada D.M., Jordani M.C., Evora P., Castro-E-Silva´ O. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. Int. J. Mol. Sci. 2019; 20 (20): 5034. DOI: 10.3390/ijms20205034.

  34. Timon R., Martinez-Guardado I., Brocherie F. Effects of Intermittent Normobaric Hypoxia on Health-Related Outcomes in Healthy Older Adults: A Systematic Review. Sports Medicine-Open. 2023; 9: 19. DOI: org/10.1186/s40798-023-00560-0.

  35. Verges S., Bachasson D., Wuyam B. Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Resp. Res. 2010; 11: 109. DOI: doi.org/10.1186/1465-9921-11-109.

  36. Burykh E.A., Parshukova O.I. Fiziologicheskie i biokhimicheskie indikatory stress-reaktsii organizma cheloveka v dinamike normobaricheskoy gipoksii [Physiological and biochemical parameters of normobaric hypoxia stress in humans]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2023; 1: 104–113. DOI: 10.34014/2227-1848-2023-1-104-113 (in Russian).

  37. Nakayama K., Kataoka N. Regulation of Gene Expression under Hypoxic Conditions. Int. J. Mol. Sci. 2019; 20 (13): 3278. DOI: 10.3390/ijms20133278.

  38. Ignatenko G.A., Mukhin I.V., Ignatenko T.S., Panieva N.Yu. Dinamika kliniko-laboratornykh proyavleniy tiroidnogo sindroma u gipertenzivnykh bol'nykh pervichnym gipotireozom na fone lecheniya [Dynamics of clinical and laboratory manifestations of thyroid syndrome in hypertensive patients with primary hypothyroidism during treatment]. Universitetskaya klinika. 2020; 2 (35): 25–32. DOI: doi.org/10.26435/uc.v0i2(35).533 (in Russian).

  39. Prikhod'ko V.A., Selizarova N.O., Okovityy S.V. Molekulyarnye mekhanizmy razvitiya gipoksii i adaptatsii k ney [Molecular mechanisms of hypoxia development and adaptation]. Ch. I. Arkhiv patologii. 2021; 83 (2): 52–61. DOI: doi.org/10.17116/patol20218302152 (in Russian).

  40. Luk'yanova L.D. Signal'nye mekhanizmy gipoksii [Hypoxia signaling mechanisms]. Moscow: RAN; 2019. 215 (in Russian).

  41. Guo R., Gu J., Zong S., Wu M., Yang M. Structure and mechanism of mitochondrial electron transport chain. Biomed. J. 2018; 41 (1): 9–20. DOI: doi.org/10.1016/j.bj.2017.12.001.

  42. Berger M.M., Grocott M.P.W. Facing acute hypoxia: from the mountains to critical care medicine. Br J. Anaesth. 2017; 118 (3): 283–286. DOI: doi.org/10.1093/bja/aew407.

  43. Zheng L., Kelly C.J., Colgan S.P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell. Physiol. 2015; 309 (6): 350–360. DOI: doi.org/10.1152/ajpcell.00191.2015.

  44. Bonanno F.G. Management of hemorrhagic shock: physiology approach, timing and strategies. J. Clin. Med. 2022; 12 (1): 260. DOI: 10.3390/jcm12010260.

  45. Sepehrvand N., Ezekowitz J.A. Oxygen therapy in patients with acute heart failure: friend or foe? JACC Heart Fail. 2016; 4 (10): 783–790. DOI: doi.org/10.1016/j.jchf.2016.03.026.

  46. Duan E.H., Adhikari N.K.J., D’Aragon F., Cook D.J., Mehta S., Alhazzani W., Goligher E., Charbonney E., Arabi Y.M., Karachi T., Turgeon A.F., Hand L., Zhou Q., Austin P., Friedrich J. Management of acute respiratory distress syndrome and refractory hypoxemia. A Multicenter Observational Study. Ann. Am. Thorac. Soc. 2017; 14 (12): 1818–1826. DOI: doi.org/10.1513/AnnalsATS.201612-1042OC.

  47. Hoiland R.L., Bain A.R., Rieger M.G., Bailey D.M., Ainslie P.N. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016; 310 (5): 398–413. DOI: doi.org/10.1152/ajpregu.00270.2015.

  48. Barnes L.A., Mesarwi O.A., Sanchez-Azofra A. The cardiovascular and metabolic effects of chronic hypoxia in animal models: a mini-review. Front. Physiol. 2022; 13: 873522. DOI: 10.3389/fphys.2022.873522.

  49. Ferns G.A., Heikal L. Hypoxia in atherogenesis. Angiology. 2017; 68 (6): 472–493. DOI: 10.1177/0003319716662423.

  50. Wong B.W., Marsch E., Treps L., Baes M., Carmeliet P. Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. 2017; 36 (15): 2187–1203. DOI: doi.org/10.15252/embj.201696150.

  51. Abe H., Semba H., Takeda N. The roles of hypoxia signaling in the pathogenesis of cardiovascular D+diseases. J. Atheroscler. Thromb. 2017; 24 (9): 884–894. DOI: doi.org/10.5551/jat.RV17009.

  52. Allwood M.A., Edgett B.A., Eadie A.L., Huber J.S., Romanova N., Millar P.J., Brunt K.R., Simpson J.A. Moderate and severe hypoxia elicit divergent effects on cardiovascular function and physiological rhythms. J. Physiol. 2018; 596 (15): 3391–3410. DOI: doi.org/10.1113/JP275945.

  53. Fu Q., Colgan S.P., Shelley C.S. Hypoxia: the force that drives chronic kidney disease. Clin Med Res. 2016; 14 (1): 15–39. DOI: doi.org/10.3121/cmr.2015.1282.

  54. Zenko M.Y., Rybnikova E.A. Perekrestnaya adaptaciya: ot F.Z. Meersona do nashih dnej. CH. 1. Adaptaciya, perekrestnaya adaptaciya i perekrestnaya sensibilizaciya [Cross adaptation: from F.Z. Meerson to our days. Part 1. Adaptation, cross adaptation and cross-sensitization]. Usp. Fiziol. Nauk. 2019; 50: 3–13. DOI: 10.1134/S0301179819040088.

  55. Jurcau A., Ardelean A.I. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines. 2022; 10 (3): 574. DOI: 10.3390/biomedicines10030574.

  56. Bourdier G., D´etrait M., Bouyon S., Lemari´e E., Brasseur S., Doutreleau S., P´epin J.L., GodinRibuot D., Belaidi E., Arnaud C. Intermittent hypoxia triggers early cardiac remodeling and contractile dysfunction in the time-course of ischemic cardiomyopathy in rats. J. Am. Heart Assoc. 2020; 9 (16): e016369. DOI: 10.1161.

  57. Nagao A., Kobayashi M., Koyasu S., Chow C.C.T., Harada H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int. J. Mol. Sci. 2019; 20 (2): 238. DOI: doi.org/10.3390/ijms20020238.

  58. Zembron-Lacny A., Tylutka A., Wacka E., Wawrzyniak-Gramacka E., Hiczkiewicz D., Kasperska A. Intermittent hypoxic exposure reduces endothelial dysfunction. Biomed Res. Int. 2020; 2020: 6479630. DOI: 10.1155/2020/6479630.

  59. Podkalicka P., Stępniewski J., Mucha O., Kachamakova-Trojanowska N., Dulak J., Łoboda A. Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules. 2020; 10 (12): 1614. DOI: 10.3390/biom10121614.

  60. Kanatous S.B., Mammen P.P., Rosenberg P.B., Martin C.M., White M.D., Dimaio J.M., Huang G., Muallem S., Garry D.J. Hypoxia reprograms calcium signaling and regulates myoglobin expression. Am. J. Physiol. Cell. Physiol. 2009; 296 (3): 393–402. DOI: doi.org/10.1152/ajpcell.00428.2008.

  61. Cowburn A.S., Macias D., Summers C., Chilvers E.R., Johnson R.S. Cardiovascular adaptation to hypoxia and the role of peripheral resistance. Elife. 2017; 6: e28755. DOI: doi.org/10.7554/eLife.28755.

  62. Belisario D.C., Kopecka J., Pasino M., Akman M., Smaele E.D., Donadelli M., Riganti C. Hypoxia dictates metabolic rewiring of tumors: implications for chemoresistance. Cells. 2020; 9: 2598. DOI: 10.3390/cells9122598.

  63. Jun J.C., Rathore A., Younas H., Gilkes D., Polotsky V.Y. Hypoxia-Inducible Factors and Cancer. Curr. Sleep. Med. Rep. 2017; 3 (1): 1–10. DOI: doi.org/10.1007/s40675-017-0062-7.

  64. Camuzi D., de Amorim I.S.S., Ribeiro Pinto L.F., Oliveira Trivilin L., Mencalha A.L., Soares Lima S.C. Regulation is in the air: the relationship between hypoxia and epigenetics in cancer. Cells. 2019; 8 (4): 300. DOI: doi.org/10.3390/cells8040300.

  65. Glazachev O.S., Kryzhanovskaya S.Y., Zapara M.A., Dudnik E.N., Samartseva V.G., Susta D. Safety and efficacy of intermittent hypoxia conditioning as a new rehabilitation / secondary prevention strategy for patients with cardiovascular diseases: a systematic review and meta-analysis. Curr. Cardiol. Rev. 2021; 17 (6): e051121193317. DOI: 10.2174/1573403X17666210514005235.

  66. Pham K., Parikh K., Heinrich E.C. Hypoxia and inflammation: insights from high-altitude physiology. Front. Physiol. 2021; 12: 676782. DOI: 10.3389/fphys.2021.676782.

  67. Santocildes G., Viscor G., Pag`es T., Ramos-Romero S., Torres J.L., Torrella J.R. Physiological effects of intermittent passive exposure to hypobaric hypoxia and cold in rats. Front. Physiol. 2021; 12: 673095. DOI: 10.3389/fphys.2021.673095.

  68. Gumbert S.D., Kork F., Jackson M.L., Vanga, N., Ghebremichael S.J., Wang C.Y. Perioperative acute kidney injury. Anesthesiology. 2020; 132: 180–204. DOI: 10.1097/ALN.0000000000002968.

  69. Pramsohler S., Burtscher M., Faulhaber M., Gatterer H., Rausch L., Eliasson A. Endurance training in normobaric hypoxia imposes less physical stress for geriatric rehabilitation. Front. Physiol. 2017; 8: 514. DOI: 10.3389/fphys.2017.00514.

  70. Kolyadich Zh.V., Semenik T.A., Andrianova T.D. Vzaimodeystvie tsentral'nykh i perifericheskikh khemoretseptorov v usloviyakh gipoksii i giperkapnii [Interaction of central and peripheral chemoreceptors under hypoxia and hypercapnia]. Otorinolaringologiya. Vostochn. Evropa. 2013; 12 (3): 63–75 (in Russian).

  71. Murach E.I., Baranov I.A., Erlykina E.I. Adaptogennye effekty kompozitsii digidrokvertsetin-khitozan v usloviyakh modelirovaniya ostroy gipoksii [Adaptogenic effects of dihydroquercetinchitosan under acute simulated hypoxia]. Byul. eksperim. biol. i meditsiny. 2013; 156b (9): 280–283 (in Russian).

  72. Sazontova T.G., Bolotova A.V., Kostin N.V. Hypoxia-inducible factor (HIF-1α), HSPs, antioxidant enzymes and membrane resistance to ROS in endurance exercise performance after adaptive hypoxic preconditioning. Adaptation biology and medicine. 2011; 6: 161–179.

  73. Loboda A., Jozkowicz A., Dulak J. HIF-1 and HIF-2 transcription factors – similar but not identical. Mol. Cells. 2010; 5: 435–442. DOI: 10.1007/s10059-010-0067-2.

  74. Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell. 2012; 148 (3): 399–408. DOI: 10.1016/j.cell.2012.01.021.

  75. Della Rocca Y., Fonticoli L., Rajan T.S., Trubiani O., Caputi S., Diomede F., Pizzicannella J., Marconi G.D. Hypoxia: molecular pathophysiological mechanisms in human diseases. J. Physiol. Biochem. 2022; 78 (4): 739–752. DOI: 10.1007/s13105-022-00912-6.

  76. Appelhoff R.J., Tian Y.M., Raval R.R., Turley H., Harris A.L., Pugh C.W., Ratcliffe P.J., Gleadle J.M. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 2004; 279 (37): 38458–38465. DOI: 10.1074/jbc.M406026200.

  77. Masson N., Singleton R.S., Sekirnik R., Trudgian D.C., Ambrose L.J., Miranda M.X., Tian Y.M., Kessler B.M., Schofield C.J., Ratcliffe P.J. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 2012; 13 (3): 251–257. DOI: doi.org/10.1038/embor.2012.9.

  78. Haase V.H. Hypoxic regulation of erythropoiesis and iron metabolism. Am. J. Physiol. Renal Physiol. 2010; 299 (1): 1–13. DOI: doi.org/10.1152/ajprenal.00174.2010.

  79. Lobigs L.M., Sharpe K., Garvican-Lewis L.A., Gore C.J., Peeling P., Dawson B., Schumacher Y.O. The athlete’s hematological response to hypoxia: a meta-analysis on the influence of altitude exposure on key biomarkers of erythropoiesis. Am. J. Hematol. 2018; 93 (1): 74–83. DOI: 10.1002/ajh.24941.

  80. Papandreou I., Cairns R.A., Fontana L., Lim A.L., Denko N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial. oxygen consumption. Cell. Metab. 2006; 3 (3): 187–197. DOI: doi.org/10.1016/j.cmet.2006.01.012.

  81. Le Moine C.M., Morash A.J., McClelland G.B. Changes in HIF-1α protein, pyruvate dehydrogenase phosphorylation, and activity with exercise in acute and chronic hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011; 301 (4): 1098–1104. DOI: doi.org/10.1152/ajpregu.00070.2011.

  82. Fukuda R., Zhang H., Kim J.W., Shimoda L., Dang C.V., Semenza G.L. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007; 129 (1): 111–122. DOI: doi.org/10.1016/j.cell.2007.01.047.

  83. Drevytska T., Gavenauskas B., Drozdovska S., Nosar V., Dosenko V., Mankovska I. HIF-3α mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise. Pathophysiology. 2012; 19 (3): 205–214. DOI: doi.org/10.1016/j.pathophys.2012.06.002.

  84. Adams J.M., Difazio L.T., Rolandelli R.H., Luján J.J., Haskó G., Csóka B., Selmeczy Z., Németh Z.H. HIF-1: a key mediator in hypoxia. Acta Physiol. Hung. 2009; 96 (1): 19–28.

  85. Percy M.J., Furlow P.W., Lucas G.S., Li X., Lappin T.R., McMullin M.F., Lee F.S. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 2008; 358 (2): 162–168. DOI: 10.1056/NEJMoa073123.

  86. Gao R.Y., Wang M., Liu Q., Feng D., Wen Y., Xia Y., Colgan S.P., Eltzschig H.K., Ju C. Hypoxia-inducible factor-2α reprograms liver macrophages to protect against acute liver injury through the production of interleukin-6. Hepatology. 2020; 71 (6): 2105–2117. DOI: 10.1002/hep.30954.

  87. Shenoy N., Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann. Oncol. 2016; 27 (9): 1685–1695. DOI: 10.1093/annonc/mdw241.

  88. Flora R., Zulkarnain M., Sorena E., Deva I.D.S., Widowati W. Correlation between hypoxia inducible factor-1α and vesicular endothelial growth factor in male wistar rat brain tissue after anaerobic exercise. Trends Med. Res. 2016; 11: 35–41. DOI: 10.3923/tmr.2016.35.41.

  89. Qureshi-Baig K., Kuhn D., Viry E., Pozdeev V.I., Schmitz M., Rodriguez F., Ullmann P., Koncina E., Nurmik M., Frasquilho S., Nazarov P.V., Zuegel N., Boulmont M., Karapetyan Y., Antunes L., Val D., Mittelbronn M., Janji B., Haan S., Letellier E. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy. 2020; 16: 1436–1452. DOI: 10.1080/15548627.2019.1687213.

  90. Hubbi M.E., Hu H., Kshitiz Ahmed I., Levchenko A., Semenza G.L. Chaperone-mediated autophagy targets hypoxia-inducible factor-1α (HIF-1α) for lysosomal degradation. J. Biol. Chem. 2013; 288 (15): 10703–10714. DOI: 10.1074/jbc.M112.414771.

  91. Kiers D., Wielockx B., Peters E., van Eijk L.T., Gerretsen J., John A., Janssen E., Groeneveld R., Peters M., Damen L., Meneses A.M., Krüger A., Langereis J.D., Zomer A.L., Blackburn M.R., Joosten L.A., Netea M.G., Riksen N.P., van der Hoeven J.G., Scheffer G.J., Eltzschig H.K., Pickkers P., Kox M. Short-term hypoxia dampens inflammation in vivo via enhanced adenosine release and adenosine 2B receptor stimulation. EBioMedicine. 2018; 33: 144–156. DOI: 10.1016/j.ebiom.2018.06.021.

  92. Li X., Berg N.K., Mills T., Zhang K., Eltzschig H.K., Yuan X. Adenosine at the interphase of hypoxia and inflammation in lung injury. Front. Immunol. 2021; 11: 604944. DOI: 10.3389/fimmu.2020.604944.

  93. Vohwinkel C.U., Coit E.J., Burns N., Elajaili H., Hernandez-Saavedra D., Yuan X., Eckle T., Nozik E., Tuder R.M., Eltzschig H.K. Targeting alveolar-specific succinate dehydrogenase A attenuates pulmonary inflammation during acute lung injury. FASEB J. 2021; 35 (4): e21468. DOI: 10.1096/fj.202002778R.

  94. Wang W., Chen N.Y., Ren D., Davies J., Philip K., Eltzschig H.K., Blackburn M.R., Akkanti B., Karmouty-Quintana H., Weng T. Enhancing extracellular adenosine levels restores barrier function in acute lung injury through expression of focal adhesion proteins. Front. Mol. Biosci. 2021; 8: 636678. DOI: 10.3389/fmolb.2021.636678. 

  95. Effendi W.I., Nagano T. A2B Adenosine receptor in idiopathic pulmonary fibrosis: pursuing proper pit stop to interfere with disease progression. Int. J. Mol. Sci. 2023; 24 (5): 4428. DOI: 10.3390/ijms24054428.

Received March 22, 2023; accepted April 24, 2023.

 

Information about the authors

Bondarenko Nadezhda Nikolaevna, Doctor of Sciences (Medicine), Professor, Head of the Chair of Human Physiology, Donetsk National Medical University named after M. Gorky. 283003, Russia, Donetsk, Ilyich Ave., 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-7452-7006

Khomutov Evgeniy Vladimirovich, Candidate of Sciences (Chemistry), Head of the Central Research Laboratory, Donetsk National Medical University named after M. Gorky. 283003, Russia, Donetsk, Ilyich Ave., 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-5621-0304

Ryapolova Tat'yana Leonidovna, Doctor of Sciences (Medicine), Professor, First Vice-Rector, Donetsk National Medical University named after M. Gorky. 283003, Russia, Donetsk, Ilyich Ave., 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0000-5081-3745

Kishenya Mariya Sergeevna, Candidate of Sciences (Medicine), Senior Researcher, Head of the Department of Molecular Genetics, Central Research Laboratory, Donetsk National Medical University named after M. Gorky. 283003, Russia, Donetsk, Ilyich Ave., 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0007-7987-4091

Ignatenko Tat'yana Stepanovna, Doctor of Sciences (Medicine), Professor, Chair of Propaedeutics of Internal Diseases, Donetsk National Medical University named after M. Gorky. 283003, Russia, Donetsk, Ilyich Ave., 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0001-2138-2277

Tolstoy Vitaliy Arkad'evich, Candidate of Sciences (Medicine), Professor, Chair of Propaedeutics of Internal Diseases, Donetsk National Medical University named after M. Gorky. 283003, Russia, Donetsk, Ilyich Ave., 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0002-4586-3118

Evtushenko Irina Stanislavovna, Candidate of Sciences (Medicine), Professor, Chair of Propaedeutics of Internal Diseases, Donetsk National Medical University named after M. Gorky. 283003, Russia, Donetsk, Ilyich Ave., 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0008-5989-7891

Tumanova Svetlana Viktorovna, Candidate of Sciences (Medicine), Associate Professor, Chair of Therapy No. 2, Donetsk National Medical University named after M. Gorky. 283003, Russia, Donetsk, Ilyich Ave., 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0006-5316-9813

 

For citation

Bondarenko N.N., Khomutov E.V., Ryapolova T.L., Kishenya M.S., Ignatenko T.S., Tolstoy V.A., Evtushenko I.S., Tumanova S.V. Molekulyarno-kletochnye mekhanizmy otveta organizma na gipoksiyu [Molecular and cellular mechanisms of hypoxic response]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2023; 2: 6–29. DOI: 10.34014/2227-1848-2023-2-6-29 (in Russian).

 

Скачать статью

УДК 616-001.8:577.2+576.5

DOI 10.34014/2227-1848-2023-2-6-29

МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ ОТВЕТА ОРГАНИЗМА НА ГИПОКСИЮ

Н.Н. Бондаренко, Е.В. Хомутов, Т.Л. Ряполова, М.С. Кишеня, Т.С. Игнатенко, В.А. Толстой, И.С. Евтушенко, С.В. Туманова

ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького», г. Донецк, Россия

 

Гипоксия – это типовой патологический процесс, характеризующийся кислородной недостаточностью в тканях с развитием патологических и защитно-компенсаторных реакций. В статье кратко изложены вопросы истории изучения гипоксии и применения интервальных гипоксических тренировок в клинической и реабилитационной практике при лечении различных заболеваний
и патологических процессов. Рассмотрены варианты физиологической и патологической гипоксии, ключевые звенья патогенеза нормо- и гипобарической гипоксии при нормальном и сниженном атмосферном давлении, этапы формирования гипоксии. Показано, что физиологические и биохимические реакции интервальных гипоксических тренировок связаны с окислительным стрессом, который развивается вследствие дисбаланса между про- и антиоксидантной системами, и избыточной продукцией активных форм кислорода. Применение интервальных гипоксических тренировок направлено на адекватную активацию защитных систем с формированием устойчивой адаптации к действию повреждающих факторов. Показана ключевая роль биологических эффектов индуцируемого гипоксией фактора 1-альфа в механизмах клеточной и тканевой адаптации к дефициту кислорода. Проанализирована роль аденозина и аденозиновых рецепторов при острых и хронических воспалительных заболеваниях, сопряженных с тканевой гипоксией.

Ключевые слова: гипоксия, интервальные гипоксические тренировки, гипоксией индуцируемый фактор, аденозин.

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов
Концепция: Бондаренко Н.Н., Ряполова Т.Л., Игнатенко Т.С.
Литературный поиск: Хомутов Е.В., Кишеня М.С., Толстой В.А., Евтушенко И.С., Туманова С.В.
Написание, подготовка первоначального проекта: Хомутов Е.В., Кишеня М.С., Толстой В.А., Евтушенко И.С., Туманова С.В.
Написание и редактирование текста: Бондаренко Н.Н., Ряполова Т.Л., Игнатенко Т.С.

 

Литература

  1. Глазачев О.С., Крыжановская С.Ю. Адаптационная медицина: стратегия психофизиологического приспособления человека к критически измененной окружающей среде. Вестник Международной академии наук. Русская секция. 2019; 1: 48–55.

  2. Ашагре С.М., Борукаева И.Х. Патофизиологическое обоснование применения интервальной гипокситерапии и энтеральной оксигенотерапии в лечении гипертонической болезни. Современные проблемы науки и образования. 2022; 1. URL: https://science-education.ru/ru/article/view?id=31506 (дата обращения: 06.04.2023). DOI: 10.17513/spno.31506.

  3. Игнатенко Г.А., Дубовая А.В., Науменко Ю.В. Возможности применения нормобарической гипокситерапии в терапевтической и педиатрической практиках. Российский вестник перинатологии и педиатрии. 2022; 67 (6): 46–53. DOI: doi.org/10.21508/1027-4065-2022-67-6-46-53.

  4. Brocherie F., Millet G.P. Hypoxic exercise as an efective nonpharmacological therapeutic intervention. Exp Mol Med. 2020; 52 (3): 529–530.

  5. Игнатенко Г.А., Мухин И.В., Паниева Н.Ю. Качество жизни у гипертензивных больных гипотиреозом на фоне разных режимов терапии. Вестник гигиены и эпидемиологии. 2020; 24 (2): 185–188.

  6. Millet G.P., Debevec T., Brocherie F., Malatesta D., Girard O. Therapeutic use of exercising in hypoxia: promises and limitations. Front. Physiol. 2016; 7: 224. DOI: 10.3389/fphys.2016.00224.

  7. Paul S., Gangwar A., Bhargava K., Khurana P., Ahmad Y. Diagnosis and prophylaxis for high-altitude acclimatization: adherence to molecular rationale to evade high-altitude illnesses. Life Sci. 2018; 203: 171–176.

  8. Rybnikova E.A., Zenko M.Y., Barysheva V.S., Vetrovoy O. Acclimatization to middle attitude hypoxia masks the symptoms of experimental posttraumatic stress disorder, but does not affect its pathogenetic mechanisms. Bull. Exp. Biol. Med. 2020; 168: 614–617. DOI: 10.1007/s10517-020-04763-3.

  9. Яцкевич С.Н., Завьялов А.И., Моррисон В.В., Захарова Н.Б. Академик Н.Н. Сиротинин и его научный вклад в развитие отечественной медицины (к 120-летию со дня рождения). Саратовский научно-медицинский журнал. 2016; 12 (4): 627–632.

  10. Chavala A. A journey between high altitude hypoxia and critical patient hypoxia: what can it teach us about compression and the management of critical disease? Med. Intensiva. 2018; 42 (6): 380–390.

  11. Serebrovska Z.O., Xi L., Tumanovska L.V., Shysh A.M., Goncharov S.V., Khetsuriani M., Kozak T.O., Pashevin D.A., Dosenko V.E., Virko S.V., Kholin V.А., Grib О.N., Utko N.А., Egorov Е., Polischuk А.О., Serebrovska Т.V. Response of circulating inflammatory markers to intermittent hypoxia-hyperoxia training in healthy elderly people and patients with mild cognitive impairment. Life. 2022; 12: 432. DOI: doi.org/10.3390.

  12. Chen P.S., Chiu W.T., Hsu P.L., Lin S.C., Peng I.C., Wang C.Y., Tsai S.J. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 2020; 27 (63): 1–19.

  13. Li Y., Li J., Atakan M.M., Wang Z., Hu Y., Nazif M., Zarekookandeh N., Ye H.Z., Kuang J., Ferri A., Petersen A., Garnham A., Bishop D.J., Girard O., Huang Y., Yan X. Methods to match high intensity interval exercise intensity in hypoxia and normoxia – a pilot study. J. Exerc. Sci. Fit. 2022; 20 (1): 70–76. DOI: 10.1016/j.jesf.2021.12.003.

  14. Allsopp G.L., Hoffmann S.M., Feros S.A., Pasco J.A., Russell A.P., Wright C.R. The effect of normobaric hypoxia on resistance training adaptations in older adults. J. Strength. Cond. Res. 2022; 36 (8): 2306–2312.

  15. Burtscher M., Gatterer H., Szubski C., Pierantozzi E., Faulhaber M. Effects of interval hypoxia on exercise tolerance: special focus on patients with CAD or COPD. Sleep Breath. 2010; 14: 209–220. DOI: 10.1007/s11325-009-0289-8.

  16. Glazachev O.S., Kryzhanovskaya S.Y., Zapara M.A., Dudnik E.N., Samartseva V.G., Susta D. Safety and efficacy of intermittent hypoxia conditioning as a new rehabilitation/ secondary prevention strategy for patients with cardiovascular diseases: a systematic review and meta-analysis. Curr. Cardiol. Rev. 2021; 17 (6): e051121193317. DOI: 10.2174/1573403X17666210514005235.

  17. Hein M., Chobanyan-Jurgens K., Tegtbur U., Engeli S., Jordan J., Haufe S. Effect of normobaric hypoxic exercise on blood pressure in old individuals. Eur. J. Appl. Physiol. 2021; 121 (3): 817–825.

  18. Игнатенко Г.А. Современные возможности адаптационной медицины. Клиническая медицина. 2008; 11. URL: http://www.health-ua.com/articles/2798.html (дата обращения: 06.04.2023).

  19. Игнатенко Г.А., Денисова Е.М., Сергиенко Н.В. Гипокситерапия как перспективный метод повышения эффективности комплексного лечения коморбидной патологии. Вестник неотложной и восстановительной хирургии. 2021; 6 (4): 73–80.

  20. Игнатенко Г.А., Майлян Э.А., Игнатенко Т.С., Капанадзе Г.Д. Влияние гипокситерапии на содержание аутоантител к антигенам щитовидной железы у женщин с аутоиммунным тиреоидитом. Медико-социальные проблемы семьи. 2022; 27 (3): 46–51.

  21. Игнатенко Г.А., Мухин И.В., Сочилин А.В., Гончаров А.Н., Субботина Е.А. Влияние гипокситерапии на респираторные расстройства у гипертензивных больных пылевой хронической обструктивной болезнью легких в период их реабилитации. Университетская клиника. 2023; 4 (45): 12–18.

  22. Gangwar A., Paul S., Ahmad Y., Bhargava K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated infammatory processes and redox post-translational modifcations: benefts at high altitude. Sci Rep. 2020; 10 (1): 7899. DOI: doi.org/10.1038/s41598-020-64848-x.

  23. Lee К., Staples K.J., Spalluto C.M., Watson A., Wilkinson T.M. Influence of hypoxia on the epithelial-pathogen interactions in the lung: implications for respiratory disease. Front. Immunol. 2021; 12: 653969. DOI: org/10.3389/fimmu.2021.653969.

  24. Wang H., Shi X., Schenck H., Hall J.R., Ross S.E., Kline G.P., Chen S., Mallet R.T., Chen P. Intermittent hypoxia training for treating mild cognitive impairment: a pilot study. Am. J. Alzheimers. Dis. Other. Demen. 2020; 35: 1533317519896725. DOI: 10.1177/1533317519896725.

  25. Zhang Y., Geng X., Tan Y., Li Q., Xu C., Xu J., Hao L., Zeng Z., Luo X., Liu F., Wang H. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother. 2020; 127: 110195. DOI: 10.1016/j.biopha.2020.110195.

  26. Alexander-Shani R., Mreisat A., Smeir E., Gerstenblith G., Stern M.D., Horowitz M. Long-term HIF-1α transcriptional activation is essential for heat-acclimation-mediated cross tolerance: mitochondrial target genes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017; 312 (5): R753–R762. DOI: 10.1152/ajpregu.00461.2016.

  27. Richalet J.-P. The invention of hypoxia. J. Appl. Physiol. 2021; 130: 1573–1582. DOI: 10.1152/japplphysiol.00936.2020.

  28. Литвицкий П.Ф. Патофизиология. 4-е изд. М.: ГЭОТАР-Медиа; 2009. 496.

  29. Smith K.A., Waypa G.B., Schumacker P.T. Redox signaling during hypoxia in mammalian cells. Redox Biol. 2017; 13: 228–234. DOI: 10.1016/j.redox.2017.05.020.

  30. Adam-Vizi V., Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol. Sci. 2006; 27 (12): 639–645. DOI: 10.1016/j.tips.2006.10.005.

  31. Balaban R.S. Modeling mitochondrial function. Am. J. Physiol. Cell Physiol. 2006; 291 (6): 1107–1113. DOI: org/10.1152/ajpcell.00223.2006.

  32. Hansen J.M., Go Y.M., Jones D.P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. An. Rev. Pharmacol. Toxicol. 2006; 46: 215–234. DOI: 10.1146/annurev.pharmtox.46.120604.141122.

  33. Soares R.O.S., Losada D.M., Jordani M.C., Evora P., Castro-E-Silva´ O. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. Int. J. Mol. Sci. 2019; 20 (20): 5034. DOI: 10.3390/ijms20205034.

  34. Timon R., Martinez-Guardado I., Brocherie F. Effects of Intermittent Normobaric Hypoxia on Health-Related Outcomes in Healthy Older Adults: A Systematic Review. Sports Medicine-Open. 2023; 9: 19. DOI: org/10.1186/s40798-023-00560-0.

  35. Verges S., Bachasson D., Wuyam B. Effect of acute hypoxia on respiratory muscle fatigue in healthy humans. Resp. Res. 2010; 11: 109. DOI: doi.org/10.1186/1465-9921-11-109.

  36. Бурых Э.А., Паршукова О.И. Физиологические и биохимические индикаторы стресс-реакции организма человека в динамике нормобарической гипоксии. Ульяновский медико-биологический журнал. 2023; 1: 104–113. DOI: 10.34014/2227-1848-2023-1-104-113.

  37. Nakayama K., Kataoka N. Regulation of Gene Expression under Hypoxic Conditions. Int. J. Mol. Sci. 2019; 20 (13): 3278. DOI: 10.3390/ijms20133278.

  38. Игнатенко Г.А., Мухин И.В., Игнатенко Т.С., Паниева Н.Ю. Динамика клинико-лабораторных проявлений тироидного синдрома у гипертензивных больных первичным гипотиреозом на фоне лечения. Университетская клиника. 2020; 2 (35): 25–32. DOI: doi.org/10.26435/uc.v0i2(35).533.

  39. Приходько В.А., Селизарова Н.О., Оковитый С.В. Молекулярные механизмы развития гипоксии и адаптации к ней. Ч. I. Архив патологии. 2021; 83 (2): 52–61. DOI: doi.org/10.17116/patol20218302152.

  40. Лукьянова Л.Д. Сигнальные механизмы гипоксии. М.: РАН; 2019. 215.

  41. Guo R., Gu J., Zong S., Wu M., Yang M. Structure and mechanism of mitochondrial electron transport chain. Biomed. J. 2018; 41 (1): 9–20. DOI: doi.org/10.1016/j.bj.2017.12.001.

  42. Berger M.M., Grocott M.P.W. Facing acute hypoxia: from the mountains to critical care medicine. Br J. Anaesth. 2017; 118 (3): 283–286. DOI: doi.org/10.1093/bja/aew407.

  43. Zheng L., Kelly C.J., Colgan S.P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell. Physiol. 2015; 309 (6): 350–360. DOI: doi.org/10.1152/ajpcell.00191.2015.

  44. Bonanno F.G. Management of hemorrhagic shock: physiology approach, timing and strategies. J. Clin. Med. 2022; 12 (1): 260. DOI: 10.3390/jcm12010260.

  45. Sepehrvand N., Ezekowitz J.A. Oxygen therapy in patients with acute heart failure: friend or foe? JACC Heart Fail. 2016; 4 (10): 783–790. DOI: doi.org/10.1016/j.jchf.2016.03.026.

  46. Duan E.H., Adhikari N.K.J., D’Aragon F., Cook D.J., Mehta S., Alhazzani W., Goligher E., Charbonney E., Arabi Y.M., Karachi T., Turgeon A.F., Hand L., Zhou Q., Austin P., Friedrich J. Management of acute respiratory distress syndrome and refractory hypoxemia. A Multicenter Observational Study. Ann. Am. Thorac. Soc. 2017; 14 (12): 1818–1826. DOI: doi.org/10.1513/AnnalsATS.201612-1042OC.

  47. Hoiland R.L., Bain A.R., Rieger M.G., Bailey D.M., Ainslie P.N. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016; 310 (5): 398–413. DOI: doi.org/10.1152/ajpregu.00270.2015.

  48. Barnes L.A., Mesarwi O.A., Sanchez-Azofra A. The cardiovascular and metabolic effects of chronic hypoxia in animal models: a mini-review. Front. Physiol. 2022; 13: 873522. DOI: 10.3389/fphys.2022.873522.

  49. Ferns G.A., Heikal L. Hypoxia in atherogenesis. Angiology. 2017; 68 (6): 472–493. DOI: 10.1177/0003319716662423.

  50. Wong B.W., Marsch E., Treps L., Baes M., Carmeliet P. Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. 2017; 36 (15): 2187–1203. DOI: doi.org/10.15252/embj.201696150.

  51. Abe H., Semba H., Takeda N. The roles of hypoxia signaling in the pathogenesis of cardiovascular D+diseases. J. Atheroscler. Thromb. 2017; 24 (9): 884–894. DOI: doi.org/10.5551/jat.RV17009.

  52. Allwood M.A., Edgett B.A., Eadie A.L., Huber J.S., Romanova N., Millar P.J., Brunt K.R., Simpson J.A. Moderate and severe hypoxia elicit divergent effects on cardiovascular function and physiological rhythms. J. Physiol. 2018; 596 (15): 3391–3410. DOI: doi.org/10.1113/JP275945.

  53. Fu Q., Colgan S.P., Shelley C.S. Hypoxia: the force that drives chronic kidney disease. Clin Med Res. 2016; 14 (1): 15–39. DOI: doi.org/10.3121/cmr.2015.1282.

  54. Зенько М.Ю., Рыбникова E.A. Перекрестная адаптация: от Ф.З. Меерсона до наших дней. Ч. 1. Адаптация, перекрестная адаптация и перекрестная сенсибилизация. Успехи физиологических наук. 2019; 50: 3–13.

  55. Jurcau A., Ardelean A.I. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines. 2022; 10 (3): 574. DOI: 10.3390/biomedicines10030574.

  56. Bourdier G., D´etrait M., Bouyon S., Lemari´e E., Brasseur S., Doutreleau S., P´epin J.L., GodinRibuot D., Belaidi E., Arnaud C. Intermittent hypoxia triggers early cardiac remodeling and contractile dysfunction in the time-course of ischemic cardiomyopathy in rats. J. Am. Heart Assoc. 2020; 9 (16): e016369. DOI: 10.1161.

  57. Nagao A., Kobayashi M., Koyasu S., Chow C.C.T., Harada H. HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int. J. Mol. Sci. 2019; 20 (2): 238. DOI: doi.org/10.3390/ijms20020238.

  58. Zembron-Lacny A., Tylutka A., Wacka E., Wawrzyniak-Gramacka E., Hiczkiewicz D., Kasperska A. Intermittent hypoxic exposure reduces endothelial dysfunction. Biomed Res. Int. 2020; 2020: 6479630. DOI: 10.1155/2020/6479630.

  59. Podkalicka P., Stępniewski J., Mucha O., Kachamakova-Trojanowska N., Dulak J., Łoboda A. Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules. 2020; 10 (12): 1614. DOI: 10.3390/biom10121614.

  60. Kanatous S.B., Mammen P.P., Rosenberg P.B., Martin C.M., White M.D., Dimaio J.M., Huang G., Muallem S., Garry D.J. Hypoxia reprograms calcium signaling and regulates myoglobin expression. Am. J. Physiol. Cell. Physiol. 2009; 296 (3): 393–402. DOI: doi.org/10.1152/ajpcell.00428.2008.

  61. Cowburn A.S., Macias D., Summers C., Chilvers E.R., Johnson R.S. Cardiovascular adaptation to hypoxia and the role of peripheral resistance. Elife. 2017; 6: e28755. DOI: doi.org/10.7554/eLife.28755.

  62. Belisario D.C., Kopecka J., Pasino M., Akman M., Smaele E.D., Donadelli M., Riganti C. Hypoxia dictates metabolic rewiring of tumors: implications for chemoresistance. Cells. 2020; 9: 2598. DOI: 10.3390/cells9122598.

  63. Jun J.C., Rathore A., Younas H., Gilkes D., Polotsky V.Y. Hypoxia-Inducible Factors and Cancer. Curr. Sleep. Med. Rep. 2017; 3 (1): 1–10. DOI: doi.org/10.1007/s40675-017-0062-7.

  64. Camuzi D., de Amorim I.S.S., Ribeiro Pinto L.F., Oliveira Trivilin L., Mencalha A.L., Soares Lima S.C. Regulation is in the air: the relationship between hypoxia and epigenetics in cancer. Cells. 2019; 8 (4): 300. DOI: doi.org/10.3390/cells8040300.

  65. Glazachev O.S., Kryzhanovskaya S.Y., Zapara M.A., Dudnik E.N., Samartseva V.G., Susta D. Safety and efficacy of intermittent hypoxia conditioning as a new rehabilitation / secondary prevention strategy for patients with cardiovascular diseases: a systematic review and meta-analysis. Curr. Cardiol. Rev. 2021; 17 (6): e051121193317. DOI: 10.2174/1573403X17666210514005235.

  66. Pham K., Parikh K., Heinrich E.C. Hypoxia and inflammation: insights from high-altitude physiology. Front. Physiol. 2021; 12: 676782. DOI: 10.3389/fphys.2021.676782.

  67. Santocildes G., Viscor G., Pag`es T., Ramos-Romero S., Torres J.L., Torrella J.R. Physiological effects of intermittent passive exposure to hypobaric hypoxia and cold in rats. Front. Physiol. 2021; 12: 673095. DOI: 10.3389/fphys.2021.673095.

  68. Gumbert S.D., Kork F., Jackson M.L., Vanga N., Ghebremichael S.J., Wang C.Y. Perioperative acute kidney injury. Anesthesiology. 2020; 132: 180–204. DOI: 10.1097/ALN.0000000000002968.

  69. Pramsohler S., Burtscher M., Faulhaber M., Gatterer H., Rausch L., Eliasson A. Endurance training in normobaric hypoxia imposes less physical stress for geriatric rehabilitation. Front. Physiol. 2017; 8: 514. DOI: 10.3389/fphys.2017.00514.

  70. Колядич Ж.В., Семеник Т.А., Андрианова Т.Д. Взаимодействие центральных и периферических хеморецепторов в условиях гипоксии и гиперкапнии. Оториноларингология. Восточн. Европа. 2013; 12 (3): 63–75.

  71. Мурач Е.И., Баранов И.А., Ерлыкина Е.И. Адаптогенные эффекты композиции дигидрокверцетин-хитозан в условиях моделирования острой гипоксии. Бюл. эксперим. биол. и медицины. 2013; 156б (9): 280–283.

  72. Sazontova T.G., Bolotova A.V., Kostin N.V. Hypoxia-inducible factor (HIF-1α), HSPs, antioxidant enzymes and membrane resistance to ROS in endurance exercise performance after adaptive hypoxic preconditioning. Adaptation biology and medicine. 2011; 6: 161–179.

  73. Loboda A., Jozkowicz A., Dulak J. HIF-1 and HIF-2 transcription factors – similar but not identical. Mol. Cells. 2010; 5: 435–442. DOI: 10.1007/s10059-010-0067-2.

  74. Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell. 2012; 148 (3): 399–408. DOI: 10.1016/j.cell.2012.01.021.

  75. Della Rocca Y., Fonticoli L., Rajan T.S., Trubiani O., Caputi S., Diomede F., Pizzicannella J., Marconi G.D. Hypoxia: molecular pathophysiological mechanisms in human diseases. J. Physiol. Biochem. 2022; 78 (4): 739–752. DOI: 10.1007/s13105-022-00912-6.

  76. Appelhoff R.J., Tian Y.M., Raval R.R., Turley H., Harris A.L., Pugh C.W., Ratcliffe P.J., Gleadle J.M. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 2004; 279 (37): 38458–38465. DOI: 10.1074/jbc.M406026200.

  77. Masson N., Singleton R.S., Sekirnik R., Trudgian D.C., Ambrose L.J., Miranda M.X., Tian Y.M., Kessler B.M., Schofield C.J., Ratcliffe P.J. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 2012; 13 (3): 251–257. DOI: doi.org/10.1038/embor.2012.9.

  78. Haase V.H. Hypoxic regulation of erythropoiesis and iron metabolism. Am. J. Physiol. Renal Physiol. 2010; 299 (1): 1–13. DOI: doi.org/10.1152/ajprenal.00174.2010.

  79. Lobigs L.M., Sharpe K., Garvican-Lewis L.A., Gore C.J., Peeling P., Dawson B., Schumacher Y.O. The athlete’s hematological response to hypoxia: a meta-analysis on the influence of altitude exposure on key biomarkers of erythropoiesis. Am. J. Hematol. 2018; 93 (1): 74–83. DOI: 10.1002/ajh.24941.

  80. Papandreou I., Cairns R.A., Fontana L., Lim A.L., Denko N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial. oxygen consumption. Cell. Metab. 2006; 3 (3): 187–197. DOI: doi.org/10.1016/j.cmet.2006.01.012.

  81. Le Moine C.M., Morash A.J., McClelland G.B. Changes in HIF-1α protein, pyruvate dehydrogenase phosphorylation, and activity with exercise in acute and chronic hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011; 301 (4): 1098–1104. DOI: doi.org/10.1152/ajpregu.00070.2011.

  82. Fukuda R., Zhang H., Kim J.W., Shimoda L., Dang C.V., Semenza G.L. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007; 129 (1): 111–122. DOI: doi.org/10.1016/j.cell.2007.01.047.

  83. Drevytska T., Gavenauskas B., Drozdovska S., Nosar V., Dosenko V., Mankovska I. HIF-3α mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise. Pathophysiology. 2012; 19 (3): 205–214. DOI: doi.org/10.1016/j.pathophys.2012.06.002.

  84. Adams J.M., Difazio L.T., Rolandelli R.H., Luján J.J., Haskó G., Csóka B., Selmeczy Z., Németh Z.H. HIF-1: a key mediator in hypoxia. Acta Physiol. Hung. 2009; 96 (1): 19–28.

  85. Percy M.J., Furlow P.W., Lucas G.S., Li X., Lappin T.R., McMullin M.F., Lee F.S. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 2008; 358 (2): 162–168. DOI: 10.1056/NEJMoa073123.

  86. Gao R.Y., Wang M., Liu Q., Feng D., Wen Y., Xia Y., Colgan S.P., Eltzschig H.K., Ju C. Hypoxia-inducible factor-2α reprograms liver macrophages to protect against acute liver injury through the production of interleukin-6. Hepatology. 2020; 71 (6): 2105–2117. DOI: 10.1002/hep.30954.

  87. Shenoy N., Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann. Oncol. 2016; 27 (9): 1685–1695. DOI: 10.1093/annonc/mdw241.

  88. Flora R., Zulkarnain M., Sorena E., Deva I.D.S., Widowati W. Correlation between hypoxia inducible factor-1α and vesicular endothelial growth factor in male wistar rat brain tissue after anaerobic exercise. Trends Med. Res. 2016; 11: 35–41. DOI: 10.3923/tmr.2016.35.41.

  89. Qureshi-Baig K., Kuhn D., Viry E., Pozdeev V.I., Schmitz M., Rodriguez F., Ullmann P., Koncina E., Nurmik M., Frasquilho S., Nazarov P.V., Zuegel N., Boulmont M., Karapetyan Y., Antunes L., Val D., Mittelbronn M., Janji B., Haan S., Letellier E. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy. 2020; 16: 1436–1452. DOI: 10.1080/15548627.2019.1687213.

  90. Hubbi M.E., Hu H., Kshitiz Ahmed I., Levchenko A., Semenza G.L. Chaperone-mediated autophagy targets hypoxia-inducible factor-1α (HIF-1α) for lysosomal degradation. J. Biol. Chem. 2013; 288 (15): 10703–10714. DOI: 10.1074/jbc.M112.414771.

  91. Kiers D., Wielockx B., Peters E., van Eijk L.T., Gerretsen J., John A., Janssen E., Groeneveld R., Peters M., Damen L., Meneses A.M., Krüger A., Langereis J.D., Zomer A.L., Blackburn M.R., Joosten L.A., Netea M.G., Riksen N.P., van der Hoeven J.G., Scheffer G.J., Eltzschig H.K., Pickkers P., Kox M. Short-term hypoxia dampens inflammation in vivo via enhanced adenosine release and adenosine 2B receptor stimulation. EBioMedicine. 2018; 33: 144–156. DOI: 10.1016/j.ebiom.2018.06.021.

  92. Li X., Berg N.K., Mills T., Zhang K., Eltzschig H.K., Yuan X. Adenosine at the interphase of hypoxia and inflammation in lung injury. Front. Immunol. 2021; 11: 604944. DOI: 10.3389/fimmu.2020.604944.

  93. Vohwinkel C.U., Coit E.J., Burns N., Elajaili H., Hernandez-Saavedra D., Yuan X., Eckle T., Nozik E., Tuder R.M., Eltzschig H.K. Targeting alveolar-specific succinate dehydrogenase A attenuates pulmonary inflammation during acute lung injury. FASEB J. 2021; 35 (4): e21468. DOI: 10.1096/fj.202002778R.

  94. Wang W., Chen N.Y., Ren D., Davies J., Philip K., Eltzschig H.K., Blackburn M.R., Akkanti B., Karmouty-Quintana H., Weng T. Enhancing extracellular adenosine levels restores barrier function in acute lung injury through expression of focal adhesion proteins. Front. Mol. Biosci. 2021; 8: 636678. DOI: 10.3389/fmolb.2021.636678.

  95. Effendi W.I., Nagano T. A2B Adenosine receptor in idiopathic pulmonary fibrosis: pursuing proper pit stop to interfere with disease progression. Int. J. Mol. Sci. 2023; 24 (5): 4428. DOI: 10.3390/ ijms24054428.

Поступила в редакцию 22.03.2023; принята 24.05.2023.

 

Авторский коллектив

Бондаренко Надежда Николаевна – доктор медицинских наук, профессор, заведующий кафедрой физиологии человека, ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького». 283003, Россия, г. Донецк, пр. Ильича, 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-7452-7006

Хомутов Евгений Владимирович – кандидат химических наук, заведующий Центральной научно-исследовательской лабораторией, ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького». 283003, Россия, г. Донецк, пр. Ильича, 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0001-5621-0304

Ряполова Татьяна Леонидовна – доктор медицинских наук, профессор, первый проректор, ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького». 283003, Россия, г. Донецк, пр. Ильича, 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0000-5081-3745

Кишеня Мария Сергеевна – кандидат медицинских наук, старший научный сотрудник, начальник отдела молекулярно-генетических исследований Центральной научно-исследовательской лаборатории, ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького». 283003, Россия, г. Донецк, пр. Ильича, 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0007-7987-4091

Игнатенко Татьяна Степановна – доктор медицинских наук, профессор кафедры пропедевтики внутренних болезней, ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького». 283003, Россия, г. Донецк, пр. Ильича, 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0001-2138-2277

Толстой Виталий Аркадьевич – кандидат медицинских наук, профессор кафедры пропедевтики внутренних болезней, ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького». 283003, Россия, г. Донецк, пр. Ильича, 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0002-4586-3118

Евтушенко Ирина Станиславовна – кандидат медицинских наук, профессор кафедры пропедевтики внутренних болезней, ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького». 283003, Россия, г. Донецк, пр. Ильича, 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0008-5989-7891

Туманова Светлана Викторовна – кандидат медицинских наук, доцент кафедры терапии № 2, ГОО ВПО «Донецкий национальный медицинский университет им. М. Горького». 283003, Россия, г. Донецк, пр. Ильича, 16; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0006-5316-9813

 

Образец цитирования

Бондаренко Н.Н., Хомутов Е.В., Ряполова Т.Л., Кишеня М.С., Игнатенко Т.С., Толстой В.А., Евтушенко И.С., Туманова С.В. Молекулярно-клеточные механизмы ответа организма на гипоксию. Ульяновский медико-биологический журнал. 2023; 2: 6–29. DOI: 10.34014/2227-1848-2023-2-6-29.