Download article

DOI 10.34014/2227-1848-2024-4-82-98

ARTIFICIAL INTELLIGENCE IN DIAGNOSING COVID-19 PNEUMONIA AND PULMONARY TUBERCULOSIS IN THE KYRGYZ REPUBLIC

B.E. Emilov1, A.A. Sorokin2, M.A. Zhakypov3, A.B. Keresbekova4, O.A. Salibaev5, T.Ch. Chubakov1

1 Kyrgyz State Medical Institute of Post-Graduate Training and Continuous Education named after S. B. Daniyarov, Bishkek, Kyrgyz Republic;

2 Kyrgyz-Russian Slavic University named after B.N. Yeltsin, Bishkek, Kyrgyz Republic;

3 National Center of Phthisiology, Bishkek, Kyrgyz Republic;

Chui-Bishkek Center for Tuberculosis Control, Bishkek, Kyrgyz Republic;

5 Educational, Medical and Scientific Center, Kyrgyz State Medical Academy named after I.K. Akhunbaev, Bishkek, Kyrgyz Republic

Nowadays, the necessity to control lung diseases such as COVID-19 caused by the SARS-CoV-2 virus and tuberculosis is obvious. One of the most important areas of this work is rapid and accurate diagnostics, including lung imaging based on artificial intelligence (AI).

Objective. The aim of the paper is to test AI for detecting COVID-19 pneumonia and pulmonary tuberculosis based on digital X-ray patterns.

Materials and Methods. The study included several stages. 1. Development of an AI model for detecting COVID-19 pneumonia and pulmonary tuberculosis. 2. Creation of a test X-ray data base. 3. Interpretation of data by radiologists. 4. Use of AI for diagnosing COVID-19 pneumonia and pulmonary tuberculosis.

Results. AI demonstrated good prognostic ability (sensitivity – 88.31 % and 83.33 %, specificity – 96.67 % and 97.78 % for pneumonia and pulmonary tuberculosis, respectively). AI effectively processes and analyzes big data, which saves doctors’ time. However, in order to ensure greater safety, healthcare professionals should bear responsibility for the final diagnosis. The collaboration between radiologists and AI seems to be desirable. AI can be an auxiliary tool in conditions of high workload or shortage of specialists, as it can improve the accuracy of radiological reports and ensure their timeliness.

Key words: COVID-19, pulmonary tuberculosis, artificial intelligence, pneumonia, X-ray diagnostics, machine learning.

Conflict of interest. The authors declare no conflict of interest.

Author contributions

Research concept and design: Chubakov T.Ch., Salibaev O.A., Emilov B.E.

Literature search, participation in the study, data processing: Emilov B.E.,Zhakypov M.A., Keresbekova A.B.

Statistical data processing: Sorokin A.A., Emilov B.E.

Data analysis and interpretation: Emilov B.E., Chubakov. T.Ch., Sorokin A.A.

Text writing and editing: Emilov B.E., Chubakov T.Ch., Zhakypov M.A.,

Keresbekova A.B., Salibaev O.A.

References

  1. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5: 536–544. DOI: 10.1038/s41564-020-0695-z.

  2. Chen J., Wu L., Zhang J., Zhang L., Gong D., Zhao Y., Chen Q., Huang S., Yang M., Yang X., Hu S., Wang Y., Hu X., Zheng B., Zhang K., Wu H., Dong Z., Xu Y., Zhu Y., Chen X., Zhang M., Yu L., Cheng F., Yu H. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci. Rep. 2020; 10 (1): 19196. DOI: 10.1038/s41598-020-76282-0.

  3. Zhi Zhen Qin, Melissa S. Sander, Bishwa Rai, Collins N Titahong, Santat Sudrungrot, Sylvain N. Laah, Lal Mani Adhikari, E. Jane Carter, Lekha Puri, Andrew J. Codlin, Jacob Creswell. Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep. 2019. 9: 15000. DOI: 10.1038/s41598-019-51503-3.

  4. Saskia den Boon, Cecily Miller. WHO operational handbook on tuberculosis. Module 2: screening - systematic screening for tuberculosis disease. Geneva: World Health Organization; 2021. Available at: https://iris.who.int/bitstream/handle/10665/340256/9789240022614-eng.pdf?sequence=1 (accessed: April 25, 2024).

  5. Paula I. Fujiwara, Katherine Floyd, Blessina Kumar. A paradigm shift in the fight against tb. Stop TB Partnership. Global Plan to End TB: 2018–2022. Geneva: Stop TB Partnership; 2019. Available at: https://stoptb.org/assets/documents/global/plan/GPR_2018-2022_Digital.pdf (accessed: April 25, 2024).

  6. Qin Z.Z., Naheyan T., Ruhwald M., Denkinger C.M., Gelaw S., Nash M., Creswell J., Kik S.V. A new resource on artificial intelligence powered computer automated detection software products for tuberculosis programmes and implementers. Tuberculosis (Edinb). 2021; 127: 102049.

  7. Qin Z.Z., Barrett R., Del Mar Castro M., Zaidi S., Codlin A.J., Creswell J., Denkinger C.M. Early user experience and lessons learned using ultra-portable digital X-ray with computer-aided detection (DXR-CAD) products: A qualitative study from the perspective of healthcare providers. PLOS ONE. 2023; 18 (2): e0277843. DOI: https://doi.org/10.1371/journal.pone.0277843.

  8. Liang S., Xu X., Yang Z., Du Q., Zhou L., Shao J., Guo J., Ying B., Li W., Wang C. Deep learning for precise diagnosis and subtype triage of drug-resistant tuberculosis on chest computed tomography. Med Comm. 2024; 5: e487. DOI: https://doi.org/10.1002/mco2.487

  9. Martínez Chamorro E., Díez Tascón A., Ibáñez Sanz L., Ossaba Vélez S., Borruel Nacenta S. Radiologic diagnosis of patients with COVID-19. Radiologia (Engl Ed). 2021; 63 (1): 56–73. DOI: 10.1016/j.rx.2020.11.001.

  10. Abougazia A., Alnuaimi A., Mahran A., Ali T., Khedr A., Qadourah B., Shareef A., Zitouni S., Kahve­ci S., Alqudah B., Al Yassin Y., Eldesoky M., Abdelmoneim A., Youssef R. Chest X-Ray Findings in COVID-19 Patients Presenting to Primary Care during the Peak of the First Wave of the Pandemic in Qatar: Their Association with Clinical and Laboratory Findings. Hindawi. Pulmonary Medicine. 2021; 2021: 4496488. DOI: https://doi.org/10.1155/2021/4496488.

  11. Meyer M., Clarke P., O'Regan A.W. Utility of the lateral chest radiograph in the evaluation of patients with a positive tuberculin skin test result. Chest. 2003; 124: 1824.

  12. Geng E., Kreiswirth B., Burzynski J., Schluger N.W. Clinical and radiographic correlates of primary and reactivation tuberculosis: a molecular epidemiology study. JAMA. 2005; 293: 2740.

  13. Khan M.A., Kovnat D.M., Bachus B. Clinical and roentgenographic spectrum of pulmonary tuberculosis in the adult. Am J Med. 1977; 62: 31. DOI: 10.1016/0002-9343(77)90346-1.

  14. Restrepo C.S., Katre R., Mumbower A. Imaging Manifestations of Thoracic Tuberculosis. Radiol Clin North Am. 2016; 54: 453. DOI: 10.1016/j.rcl.2015.12.007.

  15. Curry International Tuberculosis Center. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians. Second Edition. Available at: https://www.currytbcenter.ucsf.edu/products/view/radiographic-manifestations-tuberculosis-primer-clinicians-second-edition-cd-rom (accessed: April 25, 2024).

  16. Ramona CioboataViorel BiciuscaMihai OlteanuCorina Maria Vasile. COVID-19 and Tuberculosis: Unveiling the Dual Threat and Shared Solutions Perspective. J Clin Med. 2023; 12 (14): 4784. DOI: 10.3390/jcm12144784.

  17. Chartrand G., Cheng P.M., Vorontsov E. Deep learning: a primer for radiologists. Radiographics. 2017; 37: 2113–2131.

  18. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012; 2012: 1097.

  19. Stacey D., Légaré F., Lewis K., Barry M.J., Bennett C.L., Eden K.B., Holmes-Rovner M., Llewellyn-Tho­mas H., Lyddiatt A., Thomson R., Trevena L. Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst. Rev. 2017; 4 (4): CD001431. DOI: 10.1002/14651858.CD001431.pub5.

  20. Greenspan H., San José Estépar R., Niessen W.J., Siegel E., Nielsen M. Position paper on COVID-19 imaging and AI: From the clinical needs and technological challenges to initial AI solutions at the lab and national level towards a new era for AI in healthcare. Med. Image Anal. 2020: 66: 101800. DOI: 10.1016/j.media.2020.101800.

  21. Corinne Merle, Vanessa Veronese, Debora Pedrazzoli. Determining the local calibration of computer-assisted detection (CAD) thresholds and other parameters: a toolkit to support the effective use of CAD for TB screening. Geneva: World Health Organization; 2021. Available at: https://iris.who.int/bitstream/handle/10665/345925/9789240028616-eng.pdf (accessed: April 25, 2024).

  22. Andrew A.S. Soltan, Samaneh Kouchaki, Tingting Zhu, Dani Kiyasseh, Thomas Taylor, Zaamin B. Hussain, Tim Peto, Andrew J. Brent, David W. Eyre, David Clifton. Artificial intelligence driven assessment of routinely collected healthcare data is an effective screening test for COVID-19 in patients presenting to hospital. medRxiv; 2020. Available at: https://www.medrxiv.org/content/10.1101/2020.07.07.20148361v1.full.pdf+html (accessed: April 25, 2024). DOI: 10.1101/2020.07.07.20148361.

  23. Visca D., Ong C.W.M., Tiberi S., Centis R., D'Ambrosio L., Chen B., Mueller J., Mueller P., Duarte R., Dalcolmo M., Sotgiu G., Migliori G.B., Goletti D. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology. 2021; 27 (2): 151–165. DOI: 10.1016/j.pulmoe.2020.12.012.

  24. Islam S.R., Maity S.P., Ray A.K., Mandal M. Deep learning on compressed sensing measurements in pneumonia detection. Int. J. Imaging Syst. Technol. 2022; 32 (1): 41–54. DOI: 10.1002/ima.22651.

  25. Williams G.J., Macaskill P., Kerr M., Fitzgerald D.A., Isaacs D., Codarini M., McCaskill M., Prelog K., Craig J.C. Variability and accuracy in interpretation of consolidation on chest radiography for diagnosing pneumonia in children under 5 years of age. Pediatr. Pulmonol. 2013; 48: 1195–1200. DOI: 10.1002/ppul.22806.

  26. Shamshad F., Khan S., Zamir S.W., Khan M.H., Hayat M., Khan F.S., Fu H. Transformers in medical imaging: A survey. Med Image Anal. 2023; 88: 102802. DOI: 10.1016/j.media.2023.102802.

  27. Zhou S.K., Greenspan H., Davatzikos C., Duncan J.S., van Ginneken B., Madabhushi A., Prince J.L., Rueckert D., Summers R.M. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE Inst Electr Electron Eng. 2021; 109 (5): 820–838. DOI: 10.1109/JPROC.2021.3054390.

  28. Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition, Proceedings of the IEEE. 1998; 86 (11): 2278–2324.

  29. Manzari O.N., Ahmadabadi H., Kashiani H., Shokouhi S.B., Ayatollahi A. MedViT: A robust vision transformer for generalized medical image classification. Comput Biol Med. 2023; 157: 106791. DOI: 10.1016/j.compbiomed.2023.106791.

  30. Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi B., Ronald M.S. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017: 3462–3471. Available at: https://www.researchgate.net/publication/316736470_ChestX-ray8_Hospital-scale_Chest_X-ray_Database_and_Benchmarks_on_Weakly-Supervised_Classification_and_Localization_of_Common_Thorax_Diseases (accessed: April 25, 2024). DOI: 10.1109/CVPR.2017.369.

  31. Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya,Jayne Seekins, David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, Andrew Y. Ng. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. AAAI Conference on Artificial Intelligence; 2019. Available at: http://arxiv.org/abs/1901.07031 (accessed: April 25, 2024).

  32. Shih G., Wu C.C., Halabi S.S., Kohli M.D., Prevedello L.M., Cook T.S., Sharma A., Amorosa J.K., Arteaga V., Galperin-Aizenberg M., Gill R.R, Godoy M.C.B., Hobbs S., Jeudy J., Laroia A., Shah P.N., Vummidi D., Yaddanapudi K., Stein A. Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible Pneumonia. Radiol Artif Intell. 2019; 1 (1): e180041. DOI: 10.1148/ryai.2019180041.

  33. Johnson A.E.W., Pollard T.J., Berkowitz S.J., Greenbaum N.R., Lungren M.P., Deng C.Y., Mark R.G., Horng S. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data. 2019; 6 (1): 317. DOI: 10.1038/s41597-019-0322-0.

  34. Kahn C.E.Jr., Carrino J.A., Flynn M.J., Peck D.J., Horii S.C. DICOM and radiology: past, present, and future. J Am Coll Radiol. 2007; 4 (9): 652–657. DOI: 10.1016/j.jacr.2007.06.004.

  35. Korolyuk I.P. Luchevaya diagnostika: uchebnik dlya vuzov [Radiation diagnostics: Textbook for universities]. 2020; 217 (in Russian).

  36. MedCalc® Statistical Software version 22.021 (MedCalc Software Ltd, Ostend, Belgium). Available at: https://www.medcalc.org (accessed: April 25, 2024).

  37. DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44: 837–845.

  38. Sayeeda Rahman, Maria Teresa Villagomez Montero, Kherie Rowe. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Rev Clin Pharmacol. 2021; 14 (5): 601–621. DOI: 10.1080/17512433.2021.1902303.

  39. Goletti D., Delogu G., Matteelli A., Migliori G.B. The role of IGRA in the diagnosis of tuberculosis infection, differentiating from active tuberculosis, and decision making for initiating treatment or preventive therapy of tuberculosis infection. Int J Infect Dis. 2022; 124 (1): 12–19. DOI: 10.1016/j.ijid.2022.02.047.

  40. Corinne Merle, Vanessa Veronese, Debora Pedrazzoli. Determining the local calibration of computer-assisted detection (CAD) thresholds and other parameters: a toolkit to support the effective use of CAD for TB screening. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.

  41. Cecily Miller, Annabel Baddeley, Dennis Falzon. WHO consolidated guidelines on tuberculosis. Module 2: screening – systematic screening for tuberculosis disease. Geneva: World Health Organization; 2021. Available at: https://www.who.int/publications/i/item/9789240022676 (accessed: April 25, 2024).

  42. Rajaraman S., Antani S. Weakly labeled data augmentation for deep learning: A study on COVID-19 detection in chest X-rays. Diagnostics. 2020; 10: 358. DOI: 10.3390/diagnostics10060358.

  43. Abbas A., Abdelsamea M.M., Gaber M.M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence. 2021; 51: 854–864. DOI: https://doi.org/10.1007/s10489-020-01829-7 

  44. Hall L.O, Paul R., Goldgof D.B., Rahul P., Gregory M. Finding covid-19 from chest x-rays using deep learning on a small dataset. arXiv preprint arXiv. 2020: 1–8. DOI: https://doi.org/10.48550/arXiv.2004.02060 (accessed: April 25, 2024).

  45. Murphy K., Smits H., Knoops A.J.G., Korst M.B.J.M., Samson T., Scholten E.T., Schalekamp S., Schaefer-Prokop C.M., Philipsen R.H.H.M., Meijers A., Melendez J., van Ginneken B., Rutten M. COVID-19 on Chest Radiographs: A Multireader Evaluation of an Artificial Intelligence System. Radiology. 2020; 296 (3): 166–172. DOI: 10.1148/radiol.2020201874.

  46. Holzinger A., Biemann C., Pattichis C.S., Douglas B.K. What do we need to build explainable AI systems for the medical domain? arXiv. 2017. DOI: https://doi.org/10.48550/arXiv.1712.09923.

Received September 26, 2024; accepted November 25, 2024.

 

Information about the authors

Emilov Berik Emilovich, Pulmonologist, Postgraduate Student, Chair of Health Management and Economics, Kyrgyz State Medical Institute of Post-Graduate Training and Continuous Education named after S. B. Daniyarov. 720020, Kyrgyz Republic, Bishkek, Zhoomart Bokonbaev St., 144a; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-4800-2374

Sorokin Aleksandr Anatol'evich, Candidate of Sciences (Biology), Associate Professor, Chair of Physics, Medical Informatics and Biology, Kyrgyz-Russian Slavic University named after B. Yeltsin. 720000, Kyrgyz Republic, Bishkek, Chuy Ave., Bldg. 8; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-9682-8085

Zhakypov Murzabek Abdivalievich, Phthisiatrician, Head of the Clinical and Diagnostic Department, National Center of Physiology. 720064, Kyrgyz Republic, Bishkek, Isa Akhunbaev St., 90; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0002-7610-4925

Keresbekova Ayzat Bolotkanovna, Phthisiatrician, Chui-Bishkek Center for Tuberculosis Control. 720024, Kyrgyz Republic, Bishkek, Imanbay Elebesov St., 211; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-0371-8651

Salibaev Oskon Abdykaparovich, Doctor of Sciences (Medicine), Director, Educational, Medical and Scientific Center, Kyrgyz State Medical Academy named after I.K. Akhunbaev. 720020, Kyrgyz Republic, Bishkek, Kasym Tynystanov St., 1; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0002-9881-3933

Chubakov Tulegen Chubakovich, Doctor of Sciences (Medicine), Professor, Head of the Chair of Phthisiopulmonology, Kyrgyz State Medical Institute of Post-Graduate Training and Continuous Education named after S. B. Daniyarov. 720020, Kyrgyz Republic, Bishkek, Zhoomart Bokonbaev St., 144a, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-7876-5332

 

For citation

Emilov B.E., Sorokin A.A., Zhakypov M.A., Keresbekova A.B., Salibaev O.A., Chubakov T.Ch. Ispol'zo­vanie iskusstvennogo intellekta dlya diagnostiki pnevmonii pri COVID-19 i tuberkuleza legkikh v Kyrgyzskoy Respublike [Artificial Intelligence in diagnosing COVID-19 pneumonia and pulmonary tuberculosis in the Kyrgyz Republic]. Ul'yanovskiy mediko-biologicheskiy zhurnal. 2024; 4: 82–98. DOI: 10.34014/2227-1848-2024-4-82-98 (in Russian).

 

Скачать статью

УДК 616.24-002.14

DOI 10.34014/2227-1848-2024-4-82-98

ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ ДИАГНОСТИКИ ПНЕВМОНИИ ПРИ COVID-19 И ТУБЕРКУЛЕЗА ЛЕГКИХ В КЫРГЫЗСКОЙ РЕСПУБЛИКЕ

Б.Э. Эмилов1, А.А. Сорокин2, М.А. Жакыпов3, А.Б. Кересбекова4, О.А. Салибаев5, Т.Ч. Чубаков1

Кыргызский государственный медицинский институт переподготовки и повышения квалификации им. Санжарбека Бакировича Даниярова, г. Бишкек, Кыргызская Республика;

2 Кыргызско-Российский Славянский университет им. Б.Н. Ельцина, г. Бишкек, Кыргызская Республика;

Национальный центр фтизиатрии, г. Бишкек, Кыргызская Республика;

4 Чуй-Бишкекский центр борьбы с туберкулезом, г. Бишкек, Кыргызская Республика;

5 Учебно-лечебно-научный медицинский центр Кыргызской государственной медицинской академии им. Исы Коноевича Ахунбаева, г. Бишкек, Кыргызская Республика

 

В настоящее время не вызывает сомнений необходимость контроля таких легочных заболеваний, как COVID-19, вызываемый вирусом SARS-CoV-2, и туберкулез. Одним из важнейших направлений данной работы является быстрая и точная диагностика, в т.ч. с использованием методов визуализации легких, основанных на искусственном интеллекте (ИИ).

Цель. Проверка возможности применения ИИ в целях обнаружения пневмонии при COVID-19 и туберкулеза легких на основе цифровых рентгенограмм.

Материалы и методы. Исследование включало в себя несколько этапов: разработку модели ИИ для обучения обнаружению пневмонии при COVID-19 и туберкулеза легких; создание базы тестирующих рентген-данных; интерпретацию данных врачами-рентгенологами; использование ИИ в диагностике пневмонии при COVID-19 и туберкулеза легких.

Результаты. ИИ продемонстрировал хорошую прогностическую способность (чувствительность – 88,31 % и 83,33 %, специфичность – 96,67 % и 97,78 % для пневмонии и туберкулеза легких соответственно). Он эффективно обрабатывает и анализирует большие объемы данных, что способствует экономии времени врачей. Однако в целях обеспечения большей безопасности ответственность за окончательное заключение должен нести медицинский персонал. Оптимальным представляется сотрудничество врачей-рентгенологов и ИИ, в котором последний выполняет роль вспомогательного инструмента в условиях высокой нагрузки или нехватки специалистов, что может повысить точность рентгенологических заключений и обеспечить их своевременность.

Ключевые слова: COVID-19, туберкулез легких, искусственный интеллект, пневмония, рентген-диагностика, машинное обучение.

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов

Концепция и дизайн исследования: Чубаков Т.Ч., Салибаев О.А., Эмилов Б.Э.

Литературный поиск, участие в исследовании, обработка материала: Эмилов Б.Э., Жакыпов М.А., Кересбекова А.Б.

Статистическая обработка данных: Сорокин А.А., Эмилов Б.Э.

Анализ и интерпретация данных: Эмилов Б.Э., Чубаков. Т.Ч., Сорокин А.А.

Написание и редактирование текста: Эмилов Б.Э., Чубаков Т.Ч., Жакыпов М.А., Кересбекова А.Б., Салибаев О.А.

 

Литература

  1. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5: 536–544. DOI: 10.1038/s41564-020-0695-z.

  2. Chen J., Wu L., Zhang J., Zhang L., Gong D., Zhao Y., Chen Q., Huang S., Yang M., Yang X., Hu S., Wang Y., Hu X., Zheng B., Zhang K., Wu H., Dong Z., Xu Y., Zhu Y., Chen X., Zhang M., Yu L., Cheng F., Yu H. Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci. Rep. 2020; 10 (1): 19196. DOI: 10.1038/s41598-020-76282-0.

  3. Zhi Zhen Qin, Melissa S. Sander, Bishwa Rai, Collins N Titahong, Santat Sudrungrot, Sylvain N. Laah, Lal Mani Adhikari, E. Jane Carter, Lekha Puri, Andrew J. Codlin, Jacob Creswell. Using artificial intelligence to read chest radiographs for tuberculosis detection: a multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep. 2019. 9: 15000. DOI: 10.1038/s41598-019-51503-3.

  4. Saskia den Boon, Cecily Miller. WHO operational handbook on tuberculosis. Module 2: screening – systematic screening for tuberculosis disease. Geneva: World Health Organization; 2021. URL: https://iris.who.int/bitstream/handle/10665/340256/9789240022614-eng.pdf?sequence=1 (дата обращения: 25.04.2024).

  5. Paula I. Fujiwara, Katherine Floyd, Blessina Kumar. A paradigm shift in the fight against tb. Stop TB Partnership. Global Plan to End TB: 2018–2022. Geneva: Stop TB Partnership; 2019. URL: https://stoptb.org/assets/documents/global/plan/GPR_2018-2022_Digital.pdf (дата обращения: 25.04.2024).

  6. Qin Z.Z., Naheyan T., Ruhwald M., Denkinger C.M., Gelaw S., Nash M., Creswell J., Kik S.V. A new resource on artificial intelligence powered computer automated detection software products for tuberculosis programmes and implementers. Tuberculosis (Edinb). 2021; 127: 102049.

  7. Qin Z.Z., Barrett R., Del Mar Castro M., Zaidi S., Codlin A.J., Creswell J., Denkinger C.M. Early user experience and lessons learned using ultra-portable digital X-ray with computer-aided detection (DXR-CAD) products: A qualitative study from the perspective of healthcare providers. PLOS ONE. 2023; 18 (2): e0277843. DOI: https://doi.org/10.1371/journal.pone.0277843.

  8. Liang S., Xu X., Yang Z., Du Q., Zhou L., Shao J., Guo J., Ying B., Li W., Wang C. Deep learning for precise diagnosis and subtype triage of drug-resistant tuberculosis on chest computed tomography. Med Comm. 2024; 5: e487. DOI: https://doi.org/10.1002/mco2.487

  9. Martínez Chamorro E., Díez Tascón A., Ibáñez Sanz L., Ossaba Vélez S., Borruel Nacenta S. Radiologic diagnosis of patients with COVID-19. Radiologia (Engl Ed). 2021; 63 (1): 56–73. DOI: 10.1016/j.rx.2020.11.001.

  10. Abougazia A., Alnuaimi A., Mahran A., Ali T., Khedr A., Qadourah B., Shareef A., Zitouni S., Kahveci S., Alqudah B., Al Yassin Y., Eldesoky M., Abdelmoneim A., Youssef R. Chest X-Ray Findings in COVID-19 Patients Presenting to Primary Care during the Peak of the First Wave of the Pandemic in Qatar: Their Association with Clinical and Laboratory Findings. Hindawi. Pulmonary Medicine. 2021; 2021: 4496488. DOI: https://doi.org/10.1155/2021/4496488.

  11. Meyer M., Clarke P., O'Regan A.W. Utility of the lateral chest radiograph in the evaluation of patients with a positive tuberculin skin test result. Chest. 2003; 124: 1824.

  12. Geng E., Kreiswirth B., Burzynski J., Schluger N.W. Clinical and radiographic correlates of primary and reactivation tuberculosis: a molecular epidemiology study. JAMA. 2005; 293: 2740.

  13. Khan M.A., Kovnat D.M., Bachus B. Clinical and roentgenographic spectrum of pulmonary tuberculosis in the adult. Am J Med. 1977; 62: 31. DOI: 10.1016/0002-9343(77)90346-1.

  14. Restrepo C.S., Katre R., Mumbower A. Imaging Manifestations of Thoracic Tuberculosis. Radiol Clin North Am. 2016; 54: 453. DOI: 10.1016/j.rcl.2015.12.007.

  15. Curry International Tuberculosis Center. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians. Second Edition. URL: https://www.currytbcenter.ucsf.edu/products/view/radiographic-manifestations-tuberculosis-primer-clinicians-second-edition-cd-rom (дата обращения: 25.04.2024).

  16. Ramona CioboataViorel BiciuscaMihai OlteanuCorina Maria Vasile. COVID-19 and Tuberculosis: Unveiling the Dual Threat and Shared Solutions Perspective. J Clin Med. 2023; 12 (14): 4784. DOI: 10.3390/jcm12144784.

  17. Chartrand G., Cheng P.M., Vorontsov E. Deep learning: a primer for radiologists. Radiographics. 2017; 37: 2113–2131.

  18. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012; 2012: 1097.

  19. Stacey D., Légaré F., Lewis K., Barry M.J., Bennett C.L., Eden K.B., Holmes-Rovner M., Llewellyn-Thomas H., Lyddiatt A., Thomson R., Trevena L. Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst. Rev. 2017; 4 (4): CD001431. DOI: 10.1002/14651858.CD001431.pub5.

  20. Greenspan H., San José Estépar R., Niessen W.J., Siegel E., Nielsen M. Position paper on COVID-19 imaging and AI: From the clinical needs and technological challenges to initial AI solutions at the lab and national level towards a new era for AI in healthcare. Med. Image Anal. 2020: 66: 101800. DOI: 10.1016/j.media.2020.101800.

  21. Corinne Merle, Vanessa Veronese, Debora Pedrazzoli. Determining the local calibration of computer-assisted detection (CAD) thresholds and other parameters: a toolkit to support the effective use of CAD for TB screening. Geneva: World Health Organization; 2021. URL: https://iris.who.int/bitstream/handle/10665/345925/9789240028616-eng.pdf (дата обращения: 25.04.2024).

  22. Andrew A.S. Soltan, Samaneh Kouchaki, Tingting Zhu, Dani Kiyasseh, Thomas Taylor, Zaamin B. Hussain, Tim Peto, Andrew J. Brent, David W. Eyre, David Clifton. Artificial intelligence driven assessment of routinely collected healthcare data is an effective screening test for COVID-19 in patients presenting to hospital. medRxiv; 2020. URL: https://www.medrxiv.org/content/10.1101/2020.07.07.20148361v1.full.pdf+html (дата обращения: 25.04.2024). DOI: 10.1101/2020.07.07.20148361.

  23. Visca D., Ong C.W.M., Tiberi S., Centis R., D'Ambrosio L., Chen B., Mueller J., Mueller P., Duarte R., Dalcolmo M., Sotgiu G., Migliori G.B., Goletti D. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology. 2021; 27 (2): 151–165. DOI: 10.1016/j.pulmoe.2020.12.012.

  24. Islam S.R., Maity S.P., Ray A.K., Mandal M. Deep learning on compressed sensing measurements in pneumonia detection. Int. J. Imaging Syst. Technol. 2022; 32 (1): 41–54. DOI: 10.1002/ima.22651.

  25. Williams G.J., Macaskill P., Kerr M., Fitzgerald D.A., Isaacs D., Codarini M., McCaskill M., Prelog K., Craig J.C. Variability and accuracy in interpretation of consolidation on chest radiography for diagnosing pneumonia in children under 5 years of age. Pediatr. Pulmonol. 2013; 48: 1195–1200. DOI: 10.1002/ppul.22806.

  26. Shamshad F., Khan S., Zamir S.W., Khan M.H., Hayat M., Khan F.S., Fu H. Transformers in medical imaging: A survey. Med Image Anal. 2023; 88: 102802. DOI: 10.1016/j.media.2023.102802.

  27. Zhou S.K., Greenspan H., Davatzikos C., Duncan J.S., van Ginneken B., Madabhushi A., Prince J.L., Rueckert D., Summers R.M. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE Inst Electr Electron Eng. 2021; 109 (5): 820–838. DOI: 10.1109/JPROC.2021.3054390.

  28. Lecun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition, Proceedings of the IEEE. 1998; 86 (11): 2278–2324.

  29. Manzari O.N., Ahmadabadi H., Kashiani H., Shokouhi S.B., Ayatollahi A. MedViT: A robust vision transformer for generalized medical image classification. Comput Biol Med. 2023; 157: 106791. DOI: 10.1016/j.compbiomed.2023.106791.

  30. Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi B., Ronald M.S. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017: 3462–3471. URL: https://www.researchgate.net/publication/316736470_ChestX-ray8_Hospital-scale_Chest_X-ray_Database_and_Benchmarks_on_Weakly-Supervised_Classification_and_Localization_of_Common_Thorax_Diseases (дата обращения: 25.04.2024). DOI: 10.1109/CVPR.2017.369.

  31. Jeremy Irvin, Pranav Rajpurkar, Michael Ko,Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya,Jayne Seekins, David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, Andrew Y. Ng. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. In AAAI Conference on Artificial Intelligence; 2019. URL: http://arxiv.org/abs/1901.07031 (дата обращения: 25.04.2024).

  32. Shih G., Wu C.C., Halabi S.S., Kohli M.D., Prevedello L.M., Cook T.S., Sharma A., Amorosa J.K., Arteaga V., Galperin-Aizenberg M., Gill R.R, Godoy M.C.B., Hobbs S., Jeudy J., Laroia A., Shah P.N., Vummidi D., Yaddanapudi K., Stein A. Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible Pneumonia. Radiol Artif Intell. 2019; 1 (1): e180041. DOI: 10.1148/ryai.2019180041.

  33. Johnson A.E.W., Pollard T.J., Berkowitz S.J., Greenbaum N.R., Lungren M.P., Deng C.Y., Mark R.G., Horng S. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data. 2019; 6 (1): 317. DOI: 10.1038/s41597-019-0322-0.

  34. Kahn C.E.Jr., Carrino J.A., Flynn M.J., Peck D.J., Horii S.C. DICOM and radiology: past, present, and future. J Am Coll Radiol. 2007; 4 (9): 652–657. DOI: 10.1016/j.jacr.2007.06.004.

  35. Королюк И.П. Лучевая диагностика: учебник для вузов. 2020; 217.

  36. MedCalc® Statistical Software version 22.021 (MedCalc Software Ltd, Ostend, Belgium). URL: https://www.medcalc.org (дата обращения: 25.04.2024).

  37. DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44: 837–845.

  38. Sayeeda Rahman, Maria Teresa Villagomez Montero, Kherie Rowe. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Rev Clin Pharmacol. 2021; 14 (5): 601–621. DOI: 10.1080/17512433.2021.1902303.

  39. Goletti D., Delogu G., Matteelli A., Migliori G.B. The role of IGRA in the diagnosis of tuberculosis infection, differentiating from active tuberculosis, and decision making for initiating treatment or preventive therapy of tuberculosis infection. Int J Infect Dis. 2022; 124 (1): 12–19. DOI: 10.1016/j.ijid.2022.02.047.

  40. Corinne Merle, Vanessa Veronese, Debora Pedrazzoli. Determining the local calibration of computer-assisted detection (CAD) thresholds and other parameters: a toolkit to support the effective use of CAD for TB screening. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.

  41. Cecily Miller, Annabel Baddeley, Dennis Falzon. WHO consolidated guidelines on tuberculosis. Module 2: screening – systematic screening for tuberculosis disease. Geneva: World Health Organization; 2021. URL: https://www.who.int/publications/i/item/9789240022676 (дата обращения: 25.04.2024).

  42. Rajaraman S., Antani S. Weakly labeled data augmentation for deep learning: A study on COVID-19 detection in chest X-rays. Diagnostics. 2020; 10: 358. DOI: 10.3390/diagnostics10060358.

  43. Abbas A., Abdelsamea M.M., Gaber M.M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence. 2021; 51: 854–864. DOI: https://doi.org/10.1007/s10489-020-01829-7.

  44. Hall L.O, Paul R., Goldgof D.B., Rahul P., Gregory M. Finding covid-19 from chest x-rays using deep learning on a small dataset. arXiv preprint arXiv. 2020: 1–8. DOI: https://doi.org/10.48550/arXiv.2004.02060 (дата обращения: 25.04.2024).

  45. Murphy K., Smits H., Knoops A.J.G., Korst M.B.J.M., Samson T., Scholten E.T., Schalekamp S., Schaefer-Prokop C.M., Philipsen R.H.H.M., Meijers A., Melendez J., van Ginneken B., Rutten M. COVID-19 on Chest Radiographs: A Multireader Evaluation of an Artificial Intelligence System. Radiology. 2020; 96 (3): 166–172. DOI: 10.1148/radiol.2020201874.

  46. Holzinger A., Biemann C., Pattichis C.S., Douglas B.K. What do we need to build explainable AI systems for the medical domain? arXiv. 2017. DOI: https://doi.org/10.48550/arXiv.1712.09923.

Поступила в редакцию 26.09.2024; принята 25.11.2024.

 

Авторский коллектив

Эмилов Берик Эмилович – врач-пульмонолог, аспирант кафедры «Управления и экономики здравоохранения», Кыргызский государственный медицинский институт переподготовки и повышения квалификации им. Санжарбека Бакировича Даниярова. 720020, Кыргызская Республика, г. Бишкек, ул. Жоомарта Боконбаева, 144а; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-4800-2374

Сорокин Александр Анатольевич – кандидат биологических наук, доцент кафедры «Физики, мединформатики и биологии», Кыргызско-Российский Славянский университет им. Бориса Ельцина. 720000, Кыргызская Республика, г. Бишкек, пр. Чуй, корп. 8; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0002-9682-8085

Жакыпов Мурзабек Абдивалиевич – врач-фтизиатр, заведующий клинико-диагностическим отделением «Национального центра физиатрии». 720064, Кыргызская Республика, г. Бишкек, ул. Исы Ахунбаева, 90; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0002-7610-4925

Кересбекова Айзат Болоткановна – врач-фтизиатр, Чуй-Бишкекский центр борьбы с туберкулезом. 720024, Кыргызская Республика, г. Бишкек, ул. Иманбая Элебесова, 211; e-mail: kerezbeko­Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0000-0003-0371-8651

Салибаев Оскон Абдыкапарович – доктор медицинских наук, директор, Учебно-лечебно-научный медицинский центр Кыргызской государственной медицинской академии им. Исы Коноевича Ахунбаева». 720020, Кыргызская Республика, г. Бишкек, ул. Касыма Тыныстанова, 1; e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://orcid.org/0009-0002-9881-3933

Чубаков Тулеген Чубакович – доктор медицинских наук, профессор, заведующий кафедрой «Фтизиопульмонологии», Кыргызский государственный медицинский институт переподготовки и повышения квалификации им. Санжарбека Бакировича Даниярова. 720020, Кыргызская Республика, г. Бишкек, ул. Жоомарта Боконбаева, 144а, e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра., ORCID ID: https://or­cid.org/0000-0002-7876-5332

 

Образец цитирования

Эмилов Б.Э., Сорокин А.А., Жакыпов М.А., Кересбекова А.Б., Салибаев О.А., Чубаков Т.Ч. Использование искусственного интеллекта для диагностики пневмонии при COVID-19 и туберкулеза легких в Кыргызской Республике. Ульяновский медико-биологический журнал. 2024; 4: 82–98. DOI: 10.34014/2227-1848-2024-4-82-98